
D*-AIlS 072 DEVELOPMENT OF A DEPENDENCY THEORY TOOLBOX FOR DATAINISE 1/2
DESIGN(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB
OH4 C N STANSUERRY DEC 0? AFIT/GCS/ENO/SD-26

SUNCLASSIFIED
F/G 12/2 NL

1 3.2 1 1112.
3,6

111111!1.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS]961 A

.. "

l'I

Fii [lE COP; Y

DEVELOPMENT OF A DEPENDENCY THEORY DTIC
TOOLBOX FOR DATABASE DESIGN At :E%'

FEB 09 IM8

THlESISI

Charles Wayne Stansberry, Jr. I Dj
Captain, USAF

AFIT/GCS/ENG/87D-26 F

DLSITIUTIQN STATEMEr- A
[APPro.'ed for piablicelol

Diazlbtio Unlimited

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

882 .4 0 66

AFIT/GCS/ENG/87D-26

DEVELOPMENT OF A DEPENDENCY THEORY

TOOLBOX FOR DATABASE DESIGN

THESIS

Charles Wayne Stansberry, Jr. D T IC
Captain, USAF L C1-

AFIT/GCS/ENG/87D-26 FEB 0 9 1988

D

Approved for public release; distribution unlimited

AFIT/GCS/ENG/87D-26

DEVELOPMENT OF A DEPENDENCY THEORY

TOOLBOX FOR DATABASE DESIGN

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University
I.- In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Information Systems) Accesiv, Ftr

N TIS CRA&
DTIC TAB

0

Charles Wayne Stansberry, Jr., B.S. by........

Captain, USAF

DJA i -;.e+

December, 1987

Approved for public release; distribution unlimited

I

Preface

The purpose of this thesis was to design and implement a computer tool which automates

algorithms and functions which are used to design and study the logical structures of relational

databases. Computer assistance is needed in this area because much of the current dependency

theory used to design and study the logical structures of relational databases exists in the form

of published algorithms and theorems, and hand simulating these algorithms can be a tedious

and error prone chore. Additionally, since the process of logical design can be time consuming,

repetitive, and can be structured into a well defined set of steps, it is well suited for computer

assistance.

The computer tool, or "Dependency Theory Tocibox", was designed for use in an academic

environment as a teaching aid and research tool, rather than for practical application to database

design problems. The toolbox provides many functions which allow the user to generate and study

database designs, and is specifically designed to support research in the area of alternative database

designs. Much research is still needed in this area to define methods for automatically generating

alternative designs.

Throughout this thesis effort, I have had a great deal of help from others. This project would

not have been possible without the insights and assistance provided by my thesis advisor, Capt

Mark A. Roth. His thorough knowledge of the subject area, and his insightful guidance significantly

influenced the direction of the project, and enabled the thesis project to progress at a steady pace to

completion. Additionally, I would like to thank the members of my thesis committee, Dr. Thomas

C. Hartrum and Dr. Gary B. Lamont. Their assistance and suggestions were very helpful, and lead

to many improvements in the final product. Finally, I would like to thank my wife, Cheryl, for her

understanding and support throughout the project.

Charles Wayne Stansberry, Jr.

ii

Table of Contents

Page

Prefaceii

Table of Contents ii

List of Figures iv

List of Tables v

Abstract vi

I. Introduction 1

1.1 Background ... I

1.2 Description of Problem 3

1.3 Scope 4

1.4 Approach 5

1.5 Sequence of Presentation 5

II. Summary of Current Knowledge 6

2.1 Database Design Methodologies 6

2.2 Dependency Theory and Normalization 9

2.3 Computer Aided Database Design Tools 12

2.3.1 AFIT Theses 12

2.3.2 Scheme Design System (SDS) 15

2.3.3 Ceri and Gottlob 16

2.3.4 Relational Database Design Aid Version 1 (REDi) 18

2.3.5 Information Resource Management Aid (IRMA) 18

2.3.6 DDEW and DATAID 18

2.3.7 Silva and Melkanoff 19

~iii

-- - -

Page

2.3.8 Data Designer, Information Builder, Design 20

2.3.9 Database Designer's Workbench 20

2.4 Summary 20

Ill. Requirements Analysis 23

3.1 System Objectives 23

3.2 System User 23

3.3 Functional Requirements 23

3.4 Database Design Algorithms Required to Implement Functions 24

IV. Design Process 27

4.1 Required System Modules 27

4.2 Algorithm Selection 27

4.2.1 Envelope Set, FD/MVD Minimal Cover, Dependency Basis, 4NF

and BCNF Decomposition 29

4.2.2 3NF Decomposition, Minimal Cover, Membership Algorithm, At-

tribute Closure 32

4.2.3 Instance of an Armstrong Relation 40

4.2.4 Alternative Logical Designs 61

4.3 Data Structures and Files 65

4.3.1 Data Structures 65

4.3.2 Files 67

4.4 User Interface .. 68

V. Coding and Implementation 69

5.1 Hardware Configuration 69

5.2 Language Selection 69

5.3 Coding 70

iv

Page

VI. Acceptance Testing 71

6.1 Scope of Testing 71

6.2 Test Plan. 71

6.3 Test Procedures 72

6.4 Test Results. 72

6.4.1 Results of Phase I 72

6.4.2 Results of Phase II. 72

VII. Conclusions and Recommaendations for Further Study 75

7.1 Conclusions 75

7.2 Recommendations for Further Study. 76

A. User's/Maintenance Manual. 78

A. 1 Introduction. 78

A.2 Toolbox Location. 78

A.3 Compiling and Linking. 79

A.4 Start-up Procedure 79

A.5 Overview of User Interface 82

A.6 Main Functions. 82

A-6.1 Create or Update Database Specification File 82

A.6.2 Input File Format 83

A-6.3 Generate Logical Structures. 87

A.6.4 Accomplish Utility Functions 92

B. SADT Diagrams 97

B.1 Introduction. 97

B.2 A-0 - Assist Database Designer. 99

B.3 AO - Assist Database Designer. 101

B.4 Al - INITIALIZE TOOLBOX. 104

V

Page

B.5 A2 - Create or Update Database Specification File 106

B.6 A3 - GENERATE LOGICAL STRUCTURES 108

*B.7 A4 - ACCOMPLISH UTILITY FUNCTIONS 111

B.8 A5 - EXIT TOOLBOX 114

C. Structure Charts 115

D. Test Procedures and Input/Output Examples 126

D.1 Generate a single 3NF scheme 128

D .1.1 Test C ase 1 .. 128

D .1.2 Test C ase 2 .. 128

D .1.3 Test C ase 3 .. 129

D .1.4 Test Case 4 .. 130

D.2 Generate alternative 3NF schemes 130

D.3 Generate BCNF schemes 130

D.3.1 Test Case 1 130

D.3.2 Test Case 2 131

D.3.3 Test Case 3 132

D.3.4 Test Case 4 134

D.4 Generate 4NF schemes 134

D.4.1 Test Case 1 134

D.4.2 Test Case 2 135

D.4.3 Test Case 3 136

D.4.4 Test Case 4 137

D.5 Find minimal covers for set of FDs 138

D.5.1 Test Case 1 138

D.5.2 Test Case 2 139

D.5.3 Test Case 3 139

vi

, € ' , ,:,' , ' ',2 , ! , ... ,..... .. ,.. ,, ,-. , *... *- - .. * ,...-

m wum wu ~ rW W W~XVVWWW M7W'WWWWW WW Ur

Page

D.5.4 Test Case 4.................................... 139

D-6 Find minimal covers for set of FDs and MVs................... 140

D.6.1 Test Case 1.................................... 140

D.6.2 Test Case 2 140

D.6.3 Test Case 3.. 140

D.7 Membership algorithm. 141

D.8 Find the envelope set for a set of FDs and MVs 142

D.8.1 Test Case 1.. 142

D.8.2 Test Case 2 142

D.8.3 Test Case 3 142

D.9 Compute attribute closure 143

D.10 Find dependency basis of set of attributes 144

D.11 Generate instance of an Armstrong relation. 145

D.11.1 Test Case 1 145

D.11.2 Test Case 2 145

D.11.3 Test Case 3 146

D.11.4 Test Case 4 148

D.11.5 Test Case 5 149

D.11.6 Test Case 6.. 149

D. 11.7 Test Case 7.. 150

Bibliography. 151

vii

Wuw ~ flr VU w ~nw w nu.. u fu . %MV'.. , q'Y %r%. W rWr ,WrSF IMWV W.J W wUU wyy~.r~ rii P-. - - rW -.. L.*. W-

List of Figures

Figure Page

1. Exaipple of Armstrong Relation [11, page 20] 19

2. Instance with Many-to-Many Relationship between A and B 51

3. Instance with Many-to-Many Relationship between AB and C. 52

4. Instance with One-to-One Relationship between ABC and DE [26] 53

5. Instance of Many-to-One Relationship between AB and CD. 54

6. Instance of Many-to-One Relationship between AB and CD, and A and C 54

7. Instance with Combined Relationship between ABC. 56

8. Domain Sizes and Domain Elements. 58

9. Instance of Relation 1 59

10. Instance of Relation 3 59

*11. Instance of Relation 4 60

12. Instance of an Armstrong Relation for Example Input 60

I?13. Toolbox Makefile. 80

14. Summary of UNIX vi Commands. 84

15. Input File Example 1 85

16. Input File Example 2 86

*17. main structure chart 116

18. create-file structure chart 117

19. generate-logical-structures structure chart 118

20. utility-.functions structure chart....... 119

21. fdjrnn-cove r-interface structure chart. 120

22.- fdjnvd..min-cover-interface structure chart. 121

23. membership structure chart. 122

24. envelope-set structure chart. 122

25. attri-closure structure chart 123

viii

Figure Page

26. dep-basis structure chart 124

27. armstrongstel structure chart 124

28. infile-parse structure chart 125

ix

4

; List of Tables

Table Page

1. Computer Tools for Logical Design of Relational Databases.................. 13

.

5%"

il4
S.X

AFIT/GCS/ENG/87D-26

Abstract

Many of the key concepts used for the logical design of relational databases are based on "de-

pendency theory". In dependency theory, database dependencies are used to specify the constraints

which must hold on a database. Dependency theory studies the properties of these dependencies

and their use in the logical design of relational database systems.

Much of the current dependency theory used to design and study relational databases exists

in the form of published algorithms and theorems. However, hand simulating these algorithms

can be a tedious and error prone chore. Therefore, the purpose of this thesis investigation was

to design and implement a computer tool (that is, a "toolbox") which contains various relational

database design algorithms and functions to help solve the problems created by hand simulating

the algorithms.

ITo establish the basis for additional work in the area of computer assisted database design,

and to determine which algorithms and functions should be implemented in the toolbox, this thesis

includes a review of the activities typically done to design a relational database, and surveys the

computer tools which are available, or are being developed, to assist database designers with the

logical design of relational databases. The survey of computer tools indicated that although miany

researchers have developed computer tools to assist with relational database design, there are still

many algorithms and functions which need to be incorporated into automated design tools.

The toolbox implements algorithms to accomplish the following functions: 3NF decompo-

sition, 4NF decomposition, BCNF decomposition, envelope set, FD/MVD minimal cover, depen-

dency basis, minimal cover, membership algorithm, attribute closure, Armstrong relation instance,

and support for generation of alternative logical designs. A simple menu-driven interface was

created to access the toolbox functions.

xi

The thesis provides an overview of the dependency theory concepts and definitions which

are pertinent to understanding the algorithms and functions. Additionally, the thesis includes a

discussion of how the decomposition algorithms can be used to generate alternative designs by

changing the order of the dependencies in the input set, and by varying the order of the attributes

on the left hand side of the dependencies. The toolbox includes functions to support research in

this area.

The toolbox is intended for use in an academic environment as a teaching aid and research

tool rather than for practical application to database design problems. However, the tool could be

used to design small relational databases which have a limited number of attributes. An evaluation

of the toolbox done during the acceptance testing phase of development indicates that the tool can

effectively serve in all of these capacities.

xii

%..

DEVELOPMENT OF A DEPENDENCY THEORY

TOOLBOX FOR DATABASE DESIGN

I. Introduction

1.1 Background

Designing a database is very time consuming and consists of a complex set of activities.

The design process includes all the activities associated with analyzing, collecting, and organizing

data into both logical and physical structures which can be implemented on a computer. The

logical database structures are the file structures which show what the data is, and how it is

interrelated [10). These structures are not dependent on the specific computer on which they will

be implemented. In the relational database model, the logical structures are a set of relations

(tables) which contain all of the data elements (attributes) for the database. The physical database

structures are the structures which must comply with the specifications and considerations of the

specific computer on which they will be implemented. If these structures are not designed properly,

the database may not perform efficiently, or may not consistently maintain the integrity of the data

stored in it. Therefore, in order to design efficient and effective databases, the designer must not

only incorporate all important information into the database, but he must also determine the best

logical and physical structures for the data.

To ensure all important information is incorporated into the database, the designer may

follow one of the many structured design methodologies outlined in the literature. Several of these

methodologies, described in Chapter II, provide an overview of the tasks involved in database

design. In general, most of the structured methodologies divide the design process into distinct

phases to provide a systematic and thorough approach to the design problem.

%1

[VM W WV U VV WV WV WW W% WV WW WN 1 -U W WU

The designer may approach the logical design of a relational database several different ways.

For example, the structures may be designed by developing a conceptual model of the database

in, for example, an Entity-Relationship (ER) diagram, and then directly mapping the ER diagram

into a set of corresponding tables [1]. Another way to design the logical structures is to collect all

necessary database attributes and database constraints (database dependencies), and then hand

simulate design algorithms which generate the logical structures. Alternatively, the designer may

use one of the many computer aided database design tools which have been developed by academic

researchers and private companies. Many of the available tools are reviewed in Chapter II to provide

an overview of the computer tools which are currently available to assist database designers.

Although researchers have investigated implementing computer tools to assist designers in all

phases of database design, a significant effort has been applied in the area of logical design. This

is because the process of logical design is well suited for computer assistance since it can be time

consuming, repetitive, and can be structured into a clearly defined set of steps.

Many of the key concepts in logical design of relational databases are based on "dependency

theory". In dependency theory, database dependencies are used as a type of language to specify

the constraints which must hold on a database [12]. "Dependency theory studies the properties

of this language and its use in database management systems" [12, page 19]. The majority of the

computer tools which support the logical design process implement algorithms and functions which

design logical structures by manipulating data dependencies and organizing the data elements into

forms with certain desirable properties. These database forms are known as "normal" forms, and

they are desirable because, among other things, they ensure minimal redundancy of data, ensure

that no information is lost when the data is organized into separate relations, and they help avoid

anomalies which can sometimes occur when updating unnormalized databases. Dependency theory

and normalization are discussed in more detail in Chapter II.

2

A
°

Although many researchers have developed computer tools to assist database designers with

logical design of relational databases, there are still many algorithms and functions which need

to be incorl)orated into automated design tools. Since computer aided design tools can greatly

enhance the efficiency and effectiveness of accomplishing database design tasks, the existence of

these tools can support the development of better database designs, and can also assist students

who are studying the process of database design.

1.2 Description of Problem

Much of the current dependency theory used to design and study relational databases exists in

the form of published algorithms and theorems. Hand simulating these algorithms can be a tedious

and error prone chore. Therefore, a toolbox of algorithms and functions to manipulate database

dependencies would be beneficial in exploring the behavior of these algorithms, in assisting with

the development of new algorithms, and in the active use of database design.

Thus, many database design algorithms should be implemented in a computer aided design

tool (that is, a "toolbox") so that database designers and students studying database design have

access to automated tools to assist their efforts. The toolbox should include algorithms which

generate logical structures in specific normal forms, and also, algorithms which show alternative

designs. A toolbox which automates the execution of database design algorithms such as these

would greatly enhance the ability of designers and students to use the algorithms effectively.

Thus, the purpose of this thesis project was to implement a toolbox of algorithms and func-

tions to assist database designers and students studying database design. This computer tool will

help to solve the problems created by hand simulating the design algorithms.

3

1.3 Scope

The three main models used to define the data stored in a database include the hierarchical

model, the network model, and the relational model [16]. This thesis effort was limited to developing

a computer aided design tool which supports the relational model. The relational model was chosen

because it has widespread acceptance and is therefore the subject of much of the current database

research.

Additionally, although automated tools can be useful for all phases of database design, this

investigation only involved implementation of a tool to assist with the logical design phase. The log-

ical design phase was chosen because organizing data into tables which have the specific properties

required to optimize database manipulation and data integrity requires that the database designer

use algorithms and functions which can be very tedious to simulate manually. Additionally, much

of the database course work done at the Air Force Institute of Technology focuses on the logical

design of databases, and therefore, an automated tool which supports this phase of database design

could be useful to the students at the Institute.

The use of this tool will be mainly pedagogical. That is, it is intended for use in an academic

environment as a teaching aid and research tool rather than for practical application to database

design problems. However, the tool could be used to design small relational databases which have

a limited number of attributes.

This thesis effort did not involve proving the correctness of database design algorithms and

functions. The algorithms and functions implemented in the computer tool will be extracted from

published material, ard the users of the tool will be referred to the original publication for the

proof of correctness if it exists.

4

WI.IL ,- A.

M~WW~W'WWWMKTW V WY WW U rUWVWUY WV1Wt'W - vs VW'V

1.4 Approach

The "Dependency Theory Toolbox for Database Design" was developed using a standard

phased approach to software development. The development phases included: Requirements Anal-

ysis, Design, Coding and Implementation, and Acceptance Testing. Before designing the system,

an extensive literature review was accomplished to determine what work had already been done in

the area of computer aided database design. The literature review was then used as an input to

the first phase of system development to help establish the requirements for the toolbox.

In the first phase, the requirements for the toolbox were determined. This included defining

the system objectives, the system user, the functional requirements of the system, and the database

design algorithms required to implement the functions. Then, in the second phase, design issues

were examined, system modules were planned, data and file structures were chosen, and the user

interface was designed. Next, in the third phase, the system was coded and implemented. And

finally, in the last phase, the system was tested to ensure it operated properly.

1.5 Sequence of Presentation

The remainder of this thesis is organized to document the activities accomplished in each

phase of the development process. Chapter II contains a summary of the current knowledge related

to computer aided database design tools, and reviews the pertinent concepts of dependency theory

and normalization. Chapter III outlines the system requirements established during the require-

ments analysis phase. Then, Chapter IV documents the design phase, Chapter V documents the

coding and implementation phase, and Chapter VI documents the acceptance testing phase. The

last chapter, Chapter VII, presents conclusions and recommendations for further study. Additional

system documentation is provided in the appendices.

1. 5

II. Summary of Current Knowledge

The process of database design can be divided into several phases. Typically, these phases

include the requirements collection and analysis phase, the conceptual design phase, the logical

design phase, and the physical design phase [2]. Researchers have investigated implementing Com-

puter Aided Design tools to assist database designers in all of these phases. In order to establish the

basis for additional work in the area of computer assisted database design, this chapter summarizes

the activities typically done to design a database, and then surveys the computer tools which are

available, or being developed, to assist database designers with logical design of relational databases.

In the first section, this chapter reviews some of the structured design methodologies which

database designers may use to ensure all important information is included in the database. Then,

the next section provides an overview of "dependency theory" and "normalization" which are the

basis for many of the key concepts in logical design of relational databases. The third section then

surveys the computer tools developed for logical database design, and the final section presents a

summary of the information.

2.1 Database Design Methodologies

To help ensure all important information is incorporated into the database, the designer can

follow one of the many structured database design methodologies which have been outlined in

the current literature [2,6,9,24]. These structured methodologies provide a systematic approach

to database design, and usually divide the design process into several distinct phases. One such

methodology is described by Batini, et al. [2]. The phases defined for this approach include the

Requirements Collection and Analysis phase, the Conceptual Design phase, the Logical Design

phae, and the Physical Design phase. The authors outline the activities accomplished in each

phase as follows.

6

The Requirements Collection and Analysis phase consists of the activities required to collect

the requirements for data, operations, and events from the user. The user supplies the requirements

in plain language sentences. Then, the database designers translate the requirements in') a more

precise language using different sentence types to describe data, operations, and events.

The next phase, the Conceptual Design phase, includes the activities required to formalize

the description of the data, the operations, and the events which were collected during the first

phase. During the Conceptual Design phase, the data is organized by using Entity Relationship

(ER) diagrams, which are graphical representations of the data elements (entities), the character-

istics (attributes) of the entities, and the relationships among those entities. This process is an

incremental process of choosing all of the entities required for a specific operation, and then defining

the ER diagram for just that specific portion of the data elements. The resulting diagram is called

an operation schema. The data schema is defined as all of the data which are required to support

the operations on the database. So, as each operation schema is defined, it is integrated into the

overall data schema. Thus, a data schema is developed for each user's view (perspective), with

the data they need for their particular operations, and then the separate views are merged into a

global view which contains all of the data elements in the entire organization's database.

The next phase of design, the Logical Design phase, is defined as the activities which are

required to translate the conceptual model created in the previous phase into a logical model. The

logical model for a relational database consists of a set of relations (tables) which contain all of the

data elements for the database. The tables are set up so that they contain related data.

The Physical Design phase consists of determining how the data will actually be stored in the

memory of the target computer. For relational databases, this phase consists mainly of determining

what type of indexing system should be used to access the relations. The type of indexing should

be chosen to minimize the costs of operations on the database [2]. Thus, the overall meth,-I.,lngy

I7

:%

described by Batini, et al., considers all of the major activities involved in designing a database,

and provides a well defined structured approach to the design process.

Other"authors have defined similar database design methodologies. For example, Herman

outlined a design methodology which also consists of four phases but with slightly different names

and activities within the phases [14]. Herman defines the four phases of database design as the

Conceptual Design phase, the Detailed Conceptual Design phase, the Logical Design phase, and

the Physical Design phase. These four phases correspond to the standard phases of the software

project life cycle: Feasibility, Function Analysis, Design, and Implementation. Thus, this design

methodology has an appeal in environments where structured programming and design techniques

are already being used [14]. Like the design method defined by Batini, et al., the method defined

by Herman also considers all of the major activities involved in designing a database, and provides

a well defined structured approach to the database design process.

A third database design methodology, again similar to those already discussed, is outlined

in the article, "The Database Design and Evaluation Workbench (DDEW) at CCA" by Reiner

and others [24]. Thus, we can see that several structured approaches to database design have

been defined in the literature, and that most of the approaches clearly define steps or phases to

follow in the design process. Also, since the process of database design is very complex and time

consuming, these structured design approaches should help to ensure that all important information

is considered and ultimately incorporated into the database design [15].

Since many of the tasks involved in designing a database are time consuming and repetitive,

they are good candidates for Computer Aided Design (CAD) tools [19]. Additionally, as Bjorner-

stedt and Hulten said, "Systems for managing large scale databases under the relational model

3have become commercially available and therefore the value of design tools for the relational model

is obvious" [6, page 215]. Thus, to enhance the database design process, many researchers have

developed computer tools to aid database designers.

8

MM4 L

F "R.I.XI 9d F T WsXr xr Y I a' . , A, V i .- A .' , V.A VJ- 1= IVW 1 l % V W W- UAW UW it W 1a .

Although researchers have investigated implementing CAD tools to assist designers in all

phases of database design, a significant effort has been applied in the area of logical design. This is

because the process of logical design is well suited for computer assistance because the process can

be time consuming, repetitive, and it can be structured into a clearly defined set of steps. Many

of the key concepts in logical design of relational databases are based on "dependency theory" and

"normalization". The next section provides an overview of these two areas.

2.2 Dependency Theory and Normalization

The activities required for designing the logical structures of a relational database have been

extensively documented in the area of relational database theory known as dependency theory. As

stated in Chapter I, in dependency theoy, database dependencies are used as a type of language

to specify the constraints which must hold on a database [12]. "Dependency theory studies the

properties of this language and its use in database management systems" [12, page 19].
(20 There are many types of data dependencies, including functional dependencies, multivalued

dependencies, join dependencies, inclusion dependencies, etc. See [12] for a complete survey. Al-

though all of these types of data dependencies are useful for completely defining the semantics of

a database (by semantics, we mean all the constraints which must hold for the entire database),

this paper focuses on functional and multivalued dependencies because both types have been used

effectively to organize the database elements (attributes) into relations in certain "normal" forms.

The process of organizing the attributes of a database into relations in a certain normal form is

called "normalization". In general, the objective of normalization is to organize, or decompose,

the attributes into relations which minimize repetition of data, and which allow easy retrieval of

required information [16]. Additionally, normal forms help avoid certain types of anomalies which

occur in database manipulation [8].

-9

I.o

Many normal forms have been defined in the literature, including:

I. First Normal Form (lNF)

2. Second Normal Form (2NF)

3. Third Normal Form (3NF)

4. Boyce-Codd Normal Form (BCNF)

5. Fourth Normal Form (4NF)

A good description of all of the above normal forms can be found in [13]. A major goal of the

normalization process is to generate relations which are "lossless" and "dependency preserving"

[16]. "Lossless" means that relations must also be available in the decomposed set of relations

[81, or it must be possible to retrieve the information by joining relations together. "Dependency

preserving" means that the attributes have been grouped into relations so that it is not necessary to

join relations to verify whether a certain integrity constraint (i.e., a dependency) has been violated.

That is, all the attributes of each dependency must be embedded in single relations, or implied by

dependencies which are embedded in the relations, so it is not necessary to compute joins to verify

whether the integrity of the database has been violated [16].

Normalization can be accomplished using functional dependencies (FDs) and multivalued

dependencies (MVDs) either individually or together. Functional dependencies are a type of con-

straint of the form "X - Y", read as "X determines Y", where X and Y are attributes in the

database. Informally, this means that if a relation in the database contains columns for both X and

Y, the value of Y is determined by X. That is, if two tuples in the relation agree on X, they must

also agree on Y [12]. For example, the FD SSN -. Student should hold in a relation with columns

SSN, Student, and Courses since for any two tuples in the relation, if the SSN attributes match,

the Student attributes should also match.

10

9'- 9 5 ...P . 5 . ' ' ' . . 9

F m , J :, - W . . o_ n N ,zTV:U -VW-V TV :rw-'
- -

- ? 'V' _V't . ' "':fVW WVY'YV .V' ,.' - . ..1 t , . , - 'W. - ,w' .

Although functional dependencies are very useful for specifying which data depends on other

data, they are limited in that they can express either one-to-one relationships or many-to-onc

relationships, but not one-to-many or many-to-many relationships. In real world databases, a

certain attribute may actually determine a set of values of an attribute as opposed to a single

value. Therefore, multivalued dependencies are needed to specify when an attribute determines a

set of values [12]. Multivalued dependencies are constraints of the form "X --- Y", read as "X

multidetermines Y". As an example, the multivalued dependency "Parent - Child" should hold

in a relation with columns Parent, Child, and Hobbies (where "Hobbies" are the hobbies of the

Parent) since a specific set of children depends on the parent, and is independent of the parent's

hobbies.

Another important characteristic of multivalued dependencies is that they allow the designer

to express when two things are not directly related [4]. For example, in a relation with columns

Parent, Child, and Hobbies, as above, the multivalued dependencies "Parent -- Child" and "Par-

ent - Hobbies" express the facts that a set of children depends on a specific parent, independent

of the parent's hobbies, and that a set of hobbies depends on a specific parent, independent of the

parent's set of children. Thus, these two multivalued dependencies, written "Parent - Child I

Hobbies" for short, not only express the relationships between parents and children and parents and

hobbies, but they also express the fact that there is no relationship between children and hobbics

except the indirect relationship through the parent [4].

The concepts of FDs and MVDs can be directly applied to the process of normalization.

In general, FDs are used to "synthesize" 3NF or BCNF relations by using the FDs to determine

which closely related attributes should be grouped together [4]. On the other hand, MVDs are

used to "decompose" a set of attributes into 4NF by splitting the unrelated attributes into separate

relations [4]. For example, using MVDs, the above relation scheme (Parent, Child, Hobbies) would

be decomposed into the two smaller schemes (Parent, Child) and (Parent,Hobbies) to separate the

*- 11

unrelated attributes "Child" and "Hobbies". Additionally, since databases often require both FDs

and MVDs to express constraints, several researchers have proposed normalization techniques using

FDs and MVDs together [2,31,32].

To assist designers with logical design of relational databases, the concepts of dependency the-

ory and normalization have been implemented in several CAD tools. The next section reviews the

,1 work that has been done to automate the logical design process. Additional concepts of dependency

theory are explained in the section as necessary.

2.3 Computer Aided Database Design Tools

As stated previously, researchers have investigated implementing CAD tools for all phases of

database design. Reference [7) contains a comprehensive list of database design tools. The list does

not include a detailed review of the capabilities of each tool, therefore, further literature review was

required to determine the methods implemented in each tool to design the logical structures of a

(' - database. The literature review revealed that several tools have been implemented to support entire

database design methodologies [2,6,24]. Additionally, several tools have been developed which focus

on the logical design process. Table I contains a representative sample of the recent work which

has been accomplished to automate the logical design phase of database design.

Tie design tools listed in Table I are discussed in more detail as follows:

2.3.1 AFIT Theses. The first tool listed in Table I designs 3NF relation schemes by finding

a minimal cover of a set of FDs, and then generating a relation corresponding to each FD in the

minimal cover. The resulting relations are automatically in 3NF [29].

A minimal cover is a reduced set of FDs which is equivalent to the original set, but with no

redundancies. By equivalent we mean that botb sets have the same closure, where the closure of a

aset F of FDs is the set of all FDs logically implied by F. The closure of F is denoted by F+ .

12

44 '4A'** *g*~ ,.**p, . 4W ~~~4 m4 , *

Design Algorithms
Tool Implemented

1. AFIT Theses [15,19,27] - Minimal cover of FDs (results in 3NF relations)

2. Scheme Design System - calculate dependency basis
(SDS) [17] - find envelope set of MVDs

- find minimal cover of MVDs
- find keys and M-
- 4NF decomposition
- BCNF decomposition
- Nested Normal Form (NNF) decomposition

3. Ceri and Gottlob [8] - closure of a set of attributes
- find minimal cover
- determine keys
- test for lossless joins
- 3NF design
- BCNF design

4. Relational Database - test to determine normal form of database
Design Aid Version 1 - 3NF design
(RED1) [6] - determine if a particular data dependency logically

follows from previously defined dependencies

5. Information Resource - develop data structure
Management Aid (IRMA) charts which are in 3NF
[10]

6. Database Design and - BCNF normalization
Evaluation Workbench
(DDEW) [24]

7. DATAID [2] - flow graph approach for logical design

8. Silva and Melkanoff [26] - Armstrong database instance

9. Data Designer [30] - 3NF design

10. Information Builder [30] - 3NF design

11. Design [30] - Normalization
- finds matching keys and combines tables
- identifies foreign keys

12. Database Designer's - 3NF design
Workbench [9]

Table 1. Computer Tools for Logical Design of Relational Databases

13

A set F of dependencies is minimal (referred to as canonical in [16]) if:

1. The right hand side (RHS) of each FD in F is a single attribute,

2. No'FD X - A in F can be eliminated and still maintain an equivalent set of FDs. That

is, if an FD can be removed from F and the closure of F - {X -. A) is equal to the closure of F,

then the unnecessary FD must be removed from F.

3. The left hand side (LHS) of each FD in F has been reduced. That is, if an attribute can

be removed from the LHS of an FD without changing F+, then the "extraneous" attribute must

be removed.

The concept of minimal cover is central to normalization As Been and Kifer explain "There

is a wide consensus in the database community that, for the logical design, one only needs depen-

dencies from some minimal cover" (4, page 138]. They also assert that "It is widely acknowledged

that the design process begins by finding a minimal cover of a dependency set" [4, page 142]. One

of the main reasons it is important to find a minimal cover, is that since the minimal cover has

the same closure as the original set of dependencies specified by the designer, the minimal cover

contains all of the same "potential" information as the original set; however, since the redundancies

have been removed, the relations generated from a minimal cover should contain less redundancy

[8].

An important characteristic of minimal covers is that they are not unique for a given set of

dependencies. That is, the minimal cover will vary depending on the order in which dependencies

are removed from the original set of dependencies. Thus, altcrnative designs can be developed by

changing the order before generating the minimal cover.

The process implemented in the AFIT theses to find a minimal cover consists of the following

steps [15]. First, the RHS of each FD is reduced to a single attribute. Then, if the LIIS of two FDs

in the new set of FDs determine the same single attribute, and one of the LHSs is a subset of the

other, then the FD with the larger set of attributes in the LIIS is removed. The third step in tilt

14

. - - -... ,. , '. , ',q -... -. , 4% ., *4 ,-.... ,.. . .4% 4 :_.* 4

process removes redundant explicit transitive dependencies. That is, if a transitive dependency can

be inferred from two dependencies in the set, then the transitive dependency can be removed from

the set if it exists explicitly. For example, if A -. B and B -- C are two dependencies in the set of

FDs, then the transitive dependency A -- C is implied by these two dependencies. If A - C exists

explicitly in the set of FDs, it is removed. Jankus claims that the set of FDs which results from

these three steps is a minimal cover of the original set, and is in 3NF if each FD is treated as a

separate relation [15]. In addition to the steps required to produce the minimal cover, the process

has two more steps to reduce redundancy. The fourth step is to combine FDs with the same LIIS

into a single FD with a RHS which is the union of all the RHSs of the combined FDs. Then, if two

FDs contain the same attributes, the fifth step is to eliminate one of the FDs. For example, if the

set contains A -- B and B -- A, then one of the two FDs can be eliminated since both will result

in a relation generated with the two attributes A and B. Once the minimal cover is complete, the

system then generates a relation for each FD in the cover.

2.3.2 Scheme Design System (SDS). The Scheme Design System implements the following

design algorithms to assist the database designer.

2.3.2.1 Dependency Basis. Given a set M of multivalued dependencies, the tool can

calculate the dependency basis of a set of attributes X in a universal set U of attributes with

respect to M. The dependency basis of an attribute is a set of sets of attributes which can be used

to find the set of MVDs of the form X - Y logically implied by M [17]. This algorithm is

required to support other algorithms in the SDS such as finding a minimal cover of a set of MVDs.

.3.2.2 Envelope Set. An envelope set is the set of MVDs which is logically implied

by a set D of FDs and MVDs. The generated envelope set of MVDs can be used to decompose

relations in the context of both FDs and MVDs [33]. The algorithm implemented in the SDS

executes in a time complexity which is polynomial in the size of D [17].

15

2.3.2.3 Minimal Cover of MVDs. As described above for FDs, the minimal cover of

a set of MVDs is a reduced set of MVDs which is equivalent to the original set, but with no

redundancies [17]. An MVD X -- W in a set M of MVDs is reduced if [17]:

" X is nontrivial. That is, XW does not equal U, or W is not a subset of X.

* The LHS cannot be reduced. That is, there is no subset of X,X', such that
X' - W is in the closure of M.

" The RHS cannot be reduced. That is, there is no subset of W,W', such that
X ---. W' is in the closure of M.

" The MVD is nontransferable. That is, there is no subset of X, X', such that
X' -- W(X - X') in the closure of M.

If every MVD in a set M of MVDs is reduced, and if no proper subset of M! is a cover of Al,

then M is a minimal cover [17].

2.3.2.4 Keys and M-. For the SDS, M- is defined as a set of reduced MVDs of .11+,

and keys are defined as the set LHS(M-) [17]. The SDS generates M- and the set of keys so the

keys can be used to decompose a set of attributes into 4NF relation schemes.

2.3.2.5 4NF and BCNF decomposition. The SDS uses a single algorithm to design

both 4NF and BCNF relation schemes. If the set of dependencies used for the decomposition

process contains both FDs and MVDs, or MVDs only, then the algorithm produces a 4NF decom-

position. However, if the set of dependencies contains FDs only then the algorithm produces a

BCNF decomposition [17].

2.3.2.6 Nested Normal Form (NNF) decomposition. The NNF decomposition algo-

rithm produces nested relational database schemes, a new research area extending current relational

database technology [25].

f.3.3 Ceri and Gottilob. In their normalization tool, Ceri and Gottlob implement several

database design algorithms in the Prolog programming language. Unlike the SDS, Ceri alnd Gottlob

do not incorporate the use of multivalued dependencies in their tool, although th, indicate that

16

.r

the tool has an "open" design so that new capabilities can be easily added [8]. In order to limit

the complexity of their system, they only allow specification of functional dependencies, and thus

cannot design normal forms such as 4NF which depend on specification of multivalued dependencies

[8]. The major design algorithms they implemented include the following.

They implement an algorithm to find a minimal cover which differs from the one implemented

in the AFIT Theses discussed above. Ceri and Gottlob's implementation requires computing the

closure of attributes quite often to determine the minimal cover, whereas attribute closure is not

computed for the method used in the AFIT theses. The closure of an attribute X with respect to

a set of FDs is the set of all attributes functionally determined by X [16]. It is interesting to note

that the attribute closure algorithm is used by all of the algorithms in Ceri's and Gottlob's tool

[8]. Although algorithms exist to compute attribute closure efficiently (i.e. in a time complexity of

O(N) where N is the length of the input [12]), an algorithm which avoids calculating this closure for

each LHS of all FDs, and for all subsets of each LHS of all FDs during the left reduction procedure

could possibly execute faster for a given set of FDs. Thus, the algorithm implemented in the AFIT

theses would appear to be the faster of the two approaches. However, a closer examination of the

algorithm implemented in the AFIT theses is required to determine if it accurately generates a

minimal cover in all cases. This analysis is shown in Section 4.2.2.

Additionally, as indicated in Table I, Ceri and Gottlob implemented an algorithm to find all

the keys of a relation scheme, with keys defined as the attributes of the relation scheme which can

uniquely identify each tuple [8]. Identification of keys is important for both designing the relation

schemes and also for retrieving data from the database.

The algorithm which tests for lossless joins ensures that a particular decomposition does not

result in the loss of any information which was available in the original relations. "The decom-

position of one relation R into several relations R, is called lossless (i.e., possessing the lossless

join property) if it is possible to reconstruct R by equijoining the relation R, over the common

'C 17

l .i L.w ri..w-Um- - E W7 . I , pu , U, N AP . J, ,. '' PE , ., U .P-7 , -, , , , P''r I F W ...VY ..1 F-"V '

attributes..." [8, page 534]. Note that in this context, "equijoining" is equivalent to "natural join-

ing". Ceri and Gottlob indicate that the algorithm they implemented to decompose relations into

3NF does not guarantee loeslessness so the losslessness test can fail for some 3NF decompositions

[8]. However, other algorithms exist which guarantee the lossless join property [161 and thus this

test would not be necessary if it is already incorporated into the decomposition algorithm.

Finally, Ceri's and Gottlob's tool contains algorithms to decompose relations into 3NF and

BCNF. The 3NF algorithm implemented was originally defined in [5], and the BCNF algorithm is

defined in [28].

2.3.4 Relational Database Design Aid Version 1 (RED1). REDI is a tool developed at

the University of Stockholm for logical design of relational databases. With the tool, a database

designer can specify functional and multivalued dependencies, can test whether a database scheme

is in 2NF, 3NF, BCNF, or 4NF, can determine if a certain data dependency logically follows from

(." a set of dependencies, or can generate 3NF relation schemes [6]. Like Ceri's and Gottlob's tool, the

3NF generation function in RED1 is based on the algorithm described by Bernstein in [5].

2.3.5 Information Resource Management Aid (IRMA). The IRMA is a tool to assist with

logical database design which helps the designer organize data into data structure charts which

are in 3NF. The data structure charts are in 3NF (but not 1NF since repeating fields are allowed)

because each branch of the chart under a key is a 3NF relation since the concept of functional

dependencies is embedded into the logic of data structure chart formation [10]. IRMA does not

utilize dependency theory algorithms to normalize the logical structures since the relations are by

default in 3NF.

f.3.6 DDEW and DATAID. The Database Design and Evaluation Workbench (DDEW)

[24] and the DATAID project [2] are both development efforts to support entire database design

methodologies. The systems contain automated tools to assist with all phases of database design.

18
*1

.
t

W~~rW-W-WW1M~~rW-WW~~VWWWVWV VWrVWW1WWMVKVW 11W VW7 VI Vww WN - UW W - U V

EMP DEPT MGR
Hilbert Math Gauss

Pythagoras Math Gauss
Turing Computer Science von Neumann

Einstein Physics Gauss

Figure 1. Example of Armstrong Relation [11, page 20]

For the logical design phase, DDEW supports normalization into BCNF. The DATAID project

provides a different approach for logical design. The logical design portion of DATAID translates

the conceptual schema, which is based on an extension of the Entity Relationship model, into

logical structures by first converting the conceptual schema into a flow graph. In the graph, nodes

represent entities and arcs represent relationships between entities. The graph construction process

can produce more than one design, so the design which minimizes the number of logical accesses

of the operations and the amount of data transferred during I/O operations is selected. Then, the

logical structures are generated from the flow graph [1].

2.3.7 Silva and Melkanoff. Reference [26] indicates that Silva and Melkanoff implemented

a tool to assist database designers with determining the FDs and MVDs which should hold for

a certain set of attributes. To do this, the tool generates an instance of an Armstrong relation

which is a relation that obeys precisely every specified dependency but no others [11]. Once an

instance of the relation is generated, it is assumed that the user can recognize whether the correct

dependencies have been specified or if some are missing or incorrect [26]. The following example

from [11] illustrates this very clearly:

Let D be the set of dependencies {EMP - DEPT, DEPT - MGR}. Then, the closure

of D consists of the FDs in D and others such as EMP - MGR. The relation in Figure 1 is an

Armstrong relation for D because it obeys every FD in the closure of D but no others.

Fagin explains that the designer could examine this relation and determine that "Here is a

manager, namely Gauss, who manages two departments. Therefore, the dependencies I inputted

19

must not have implied that no manager can manage two different departments. Since I want this

to be a constraint for my database, I'd better input the FD MGR -. DEPT" [11, page 2]. Thus,

the generatiDn of an instance of an Armstrong relation for a given set of dependencies could be

very useful for determining which dependencies should be specified for a given set of attributes.

Recent information indicates this tool no longer exists [20].

2.3.8 Data Designer, Information Builder, Design. These three design aids are commer-

cially available tools which have been developed to support the normalization process [30]. In

addition to normalization, Design also provides algorithms to find relations with matching keys

and combine those relations to minimize redundancy. Also, the tool identifies foreign keys which

are attributes in a relation r which are not keys of r, but are keys of another relation in the database

[13]. This function assists the designer in understanding how the various tables are related.

;2.3.9 Database Designer's Workbench. Like DDEW and DATAID, the last tool listed in
(.A Table I also supports the entire database design process. The functions provided for the logical

design phase include a normalization tool which synthesizes 3NF relations from a set of functional

dependencies [9]. Additional logical design tools are planned for future implementation.

2.4 Summary

Designing a database is a very complex set of activities which is time consuming and, if

not done properly, can lead to a database which does not perform efficiently or which does not

consistently maintain the integrity of the data it is intended to record [15]. Thus, several database

design methodologies have been described in the literature to establish a structured approach to

the task of database design. Most of the approaches follow clearly defined steps or phases for

the design process. And since the process of database design is very complex, these structured

Y ~ design approaches will help to ensure that all important information is considered and ultimately

4. 20

4."

f 4 **. . . . • •*• -*• * °l-q

rTw' '" V "RVV ' WV-V UW. VL iWXV 'WI n 'W, " I

incorporated into the database [15]. Thereby, ensuring the quality and integrity of the database

design.

Additionally, since many of the tasks involved in designing a database are time consuming

and repetitive, they are good candidates for Computer Aided Design (CAD) tools [19]. Therefore,

many researchers have developed computer tools to aid database designers. Although researchers

.3. have investigated implementing CAD tools to assist designers in all phases of database design, a
3.

significant effort has been applied in the area of logical design. This is because the process of logical

design is well suited for computer assistance because the process can be time consuming, repetitive

and it can be structured into a clearly defined set of steps.

Although the computer tools presented in Table I implement several approaches to logical

database design, most of the tools assist with the process of normalization. To accomplish normal-

ization, the tools contain a variety of algorithms to manipulate data dependencies, and to generate

the normalized set of relations. The basic set of algorithms needed for this process includes the al-

gorithms for finding a minimal cover of a set of dependencies, generating attribute closure, ensuring

decompositions are lossless either by incorporating this check into the decomposition algorithms or

by implementing a separate algorithm to check for losslessness, and normalization algorithms for

generating the normalized database schemes. Additionally, other algorithms can be very helpful to

the designer, such as the one implemented to generate instances of Armstrong relations to help the

designer find the dependencies for a database.

Most of the normalization tools presented focus on designing database schemes in one or two

_ normal forms. And, although many researchers have pointed out that decomposition algorithms

*will generate different designs depending on the minimal cover used as input, none of the tools

attempt to generate alternative designs by automatically generating all possible minimal covers.

Additionally, the majority of the tools normalize relations into 3NF or BCNF using only

functional dependencies, or into 4NF using only multivalued dependencies. Most tools do not use

* 21

" -%,

II
.an approach to normalization which integrates both FDs and MVDs. This limits the types of data

dependencies which a designer can specify for a particular set of data.

Thus, although many researchers have developed computer tools to assist with logical design

of relational databases, a tool which could automatically generate alternative designs by computing

different minimal covers, normalize relations using FDs, MVDs, and both types of dependencies

together, and which could help the designer determine the dependencies for a certain set of data

would be very useful as a design aid, a research tool, and to students studying database design.

2

4w

(g.

III. Requirements Analysis

3.1 System Objectives

The overall objective of the Dependency Theory Toolbox is to automate algorithms which are

used to design logical structures for relational databases, and to provide an interface to the toolbox

which helps the user work with the algorithms. The system is intended for use in an academic

environment as a teaching aid and research tool rather than for practical application to database

design problems. However, the tool could be used to design small relational databases which have

a limited number of attributes.

Additionally, a long range objective of the toolbox is to serve as a normalization tool in a

suite of stand-alone database design tools developed at AFIT. Therefore, the file formats used by

the toolbox must be designed to provide a standard interface so database attributes and constraints

can be passed between all tools.

3.2 System User

Since this design tool is mainly for use in an academic environment, the system users will

be instructors and students who are studying dependency theory and relational database design.

Therefore, the system can be designed for users who are familiar with dependency theory and

normalization concepts.

3.3 Functional Requirements

The functional requirements for the toolbox were defined and analyzed using Structured

Analysis and Design Technique (SADT). SADT is a methodology for accomplishing functional

analysis and system design. In this methodology, SADT diagrams are used to document the

system requirements. The requirements analysis was done in a top-down, structured, modular, and

hierarchical fashion. That is, the top level requirements were defined first, and then the next lower

23

, ,.. .:.f., . .7. ,. .", ,_,_..,.. - . .. * . N. -. * ,.* , & ,. ,.. ,..,

a" level in the function hierarchy was defined, and so on, until the lowest level functions were defined.

Additionally, the functional requirements were grouped into modules of related activities.

The SADT diagrams which define and document the functional requirements for this toolbox

are contained in Appendix B. The diagrams explain "what" the requirements are, and the pages of

text which correspond to each diagram explain the requirements in more detail and explain "why"

.14
% some of the requirements exist.

3.4 Database Design Algorithms Required to Implement Functions

The requirements analysis revealed that the toolbox must contain algorithms to accomplish

several functions. Definitions of some of the pertinent terms are presented before the list of algo-

rithms.

* superkey: a set of attributes which uniquely identifies each entity (tuple) of a relation. That

is, a superkey functionally determines all attributes in the relation.

* candidate key: a superkey which has no proper subset which is also a superkey.

" primary key: a candidate key which the database designer chooses to use as the primary

means to identify each element (entity) in a set of entities.

" fully dependent: an attribute is fully dependent on a set of attributes when it is functionally

dependent on the entire set of attributes, but not dependent on any subset of the attributes.

" trivial FD: an FD, X - Y is trivial if Y C X.

" trivial MVD: an MVD, X-.-Y, is trivial whenever Y C X or Y U X equals all the attributes

in the relation being considered.

. 3NF Designs. Third Normal Form (3NF) is a normal form in which each relation of a

database conforms to the following restrictions [18]. First of all, each relation cannot contain

24

€, nonkey attributes which are functionally dependent on part of the primary key for the rela-

tion. In other words, each nonkey attribute of each relation must be fully dependent on the

primary key. (This requirement causes the relations to be in 2NF). Additionally, no relation

can contain a nonkey attribute which is dependent on another nonkey attribute. This last

requirement ensures that no nonkey attribute is transitively dependent on the primary key.

2. BCNF Designs. Boyce/Codd Normal Form (BCNF) is a stronger normal form than 3NF.

BCNF has the same restrictions as named above for 3NF, however, BCNF also requires that

the LHS of each nontrivial functional dependency be a superkey of the relation it applies to

[16].

3. 4NF Designs. Fourth Normal Form (4NF) is a normal form which is defined exactly like

BCNF except that instead of functional dependencies, the 4NF definition uses multivalued

dependencies [16]. That is, the LHS of each nontrivial multivalued dependency must be a

superkey of the relation it applies to.

4. Minimal Cover of a Set of FDs. A minimal cover of a set of FDs is a reduced set of

FDs which is equivalent to the original set, but with no redundancies. See Section 2.3.1

for a detailed definition. This function is required in the toolbox because, as explained in

Section 2.3.1, the concept of minimal cover is central to normalization. Minimal covers are

important because the cover contains all the same "potential" information as the original set;

*, however, since the redundancies have been removed, the relations generated from a minimal

cover should contain less redundancy [8]. This function will be used by the user as a stand-

alone function, and by the normalization algorithms.

5. Minimal Cover of a Set of MVDs. As described above for FDs, the minimal cover of a

set of MVDs is a reduced set of MVDs which is equivalent to the original set, but with no

redundancies [17]. See Section 2.3.2.3 for a detailed definition. This function is required in

25

the toolbox for the same reason as the function described above to find the minimal cover of

a set of FDs.

6. Envelope Set for a Set of FDs and MVDs. As described in Section 2.3.2.2, an envelope

set is the set of MVDs which is logically implied by a set D of FDs and MVDs. The generated

envelope set of MVDs can be used to decompose relations in the context of both FDs and

MVDs [33]. This function is required in the toolbox because the system is required to design

relations in the context of both FDs and MVDs.

7. Attribute Closure. As stated in Section 2.3.3, the closure of an attribute X with respect

to a set of FDs is the set of all attributes functionally determined by X [16]. This function is

required in the toolbox because attribute closure is needed to support other functions required

in the toolbox, such as the minimal cover and 3NF design functions.

8. Membership Algorithm. This algorithm will determine if an FD is in the closure of a

given set of FDs. This function is required in the toolbox to support other functions required

in the toolbox, such as the attribute closure and minimal cover functions.

9. Instance of Armstrong Relation. This function will generate an instance of an Armstrong

relation (see Section 2.3.7) for a given set of dependencies and attributes. This function is

required in the toolbox to help the system user determine which dependencies should be

specified for a given set of attributes.

10. Dependency Basis of a Set of Attributes. The dependency basis of a set of attributes

X is the set of sets of attributes logically implied by X with respect to a given set of FDs

and MVDs. This function is required in the toolbox to support other toolbox functions such

as finding a minimal cover of a set of MVDs.

PS..

26

%I

IV. Design Process

4.1 Required System Modules

The required system modules were derived from the functional requirements defined in the

SADT diagrams in Appendix B. The structure charts in Appendix C show the top level modules

and their relationships to one another. The toolbox contains many additional lower level modules

which support these top level functions. The function of each module is documented in the module

headers in the toolbox program listings.

4.2 Algorithm Selection

The requirements analysis revealed that the toolbox must contain algorithms to accomplish

the following main functions:

* .Envelope Set

. FD/MVD Minimal Cover

* Dependency Basis

* 4NF Decomposition

* BCNF Decomposition

* 3NF Decomposition

* Minimal Cover

e Membership Algorithm

9 Attribute Closure

a Armstrong Relation function

* Alternative Logical Designs

27

U. ~ 9 *' y- * ~ '~V,.'"-'""".*: " .
- ' d |' : : d .I.- u - V C*. *i W YI -

For most of the functions, many different algorithms have been published to accomplish each

task, therefore, it was necessary to select the one which best suited our objectives. The main

selection criteria were:

* time complexity

" implementation time

" availability

Time complexity was an important criteria because we wanted algorithms which would execute iii

a reasonable amount of time (i.e., polynomial time or faster). Implementation time was important

because we needed algorithms which could be implemented within the time limits of this project.

Availability was used as a selection criteria because if source code was available for an algorithm, or

if detailed pseudo code was available in the literature, there was no reason to redevelop something

that was already done as long as the time complexity of the algorithm was acceptable.

The time complexity of an algorithm is a measure of the amount of time required for the

algorithm to execute. For this application, we were mainly concerned with the worst cast running

time of the algorithms. The worst case running time, or "order of" an algorithm, can be determined

by analyzing the performance of the algorithm with respect to the dimensions of the objects it

manipulates. Therefore, an "order of" analysis was done using this approach to compare the

running times of algorithms considered for implementation in the toolbox. If the analysis of a

specific algorithm was previously done in the literature, the analysis is cited.

The space complexity of the algorithms, that is, the amount of space used by the algorithm,

was not a critical factor for most of the algorithms because the space required by the algorithms

will not vary significantly. For example, a 3NF design algorithm generates a set of relation schemes,

and regardless of how the algorithm generates those schemes, the number of schemes output by

different algorithms will not vary significantly. This is also true for other algorithms, such as

28

9 -. ~ ~~ ~ ~" V*.' .u ,' j,"".'''" /,. e.' -

- W Wl W~ P&n " 71 17 X 'A 7A "X 1TV-VW~j V VV _j W'6 WV - VIWIVWV VU~WVW.J -"i. JW. W W 1SWd

the minimal cover algorithm, dependency basis algorithm, and other algorithms required in the

toolbox. However, space complexity is an important factor for selecting an algorithm to generate

alternative designs since this algorithm could potentially generate a large number of database

schemes. Therefore, space complexity was considered in the examination of alternative design

algorithms.

The following subsections document the algorithm selection process, and the pseudo code for

each algorithm selected for implementation.

4.2.1 Envelope Set, FD/MVD Minimal Cover, Dependency Basis, 4NF and BCNF Dccorn-

position. Several of the functions have been implemented in the Scheme Design System [17] which

was available at AFIT, and therefore, the algorithms implemented were candidates for the toolbox

as long as the time complexity of their execution was polynomial time. The algorithm implemented

in the SDS to compute the envelope set has a time complexity which is polynomial in the size of

the set of MVDs and FDs used as input [17]. Additionally, the time complexity of the FD/MVD

minimal cover algorithm implemented in the SDS is polynomial in the size of the set of dependen-

4..' cies used as input [17].Therefore, these two algorithms were acceptable for implementation in the

toolbox.

The SDS also contained a dependency basis algorithm and a single algorithm for generating

4NF or BCNF database designs. These algorithms also execute in polynomial time [17]. Therefore,

the algorithms for BCNF decomposition, 4NF decomposition, FD/MVD minimal cover, envelope

set, and dependency basis were taken from the SDS and adapted for use in the toolbox. The pseudo

code for these algorithms is presented below as it appears in [17].

Dependency Basis

See Section 2.3.2.1 for the definition of dependency basis.

INPUT: A set of attributes U and a set of MVDs M on U.
OUTPUT: Dependency basis of X with respect to M.
begin

29

k%

J W W WWOYV'WWVrVWEUWWVW'WVWVX' ., PrA.- -VW AVVWu g- -- 4~ x Ai K WV YV t 'WWVFF'K 11 PY' Wr F". An P. PW' MW I FW ' I I

S = [u - X);
repeat

look for dependencies V -.- W in M and a set Y

in S such that Y n W $ 0 but Y n V = 0;
replace Y by Y fn W and Y - W in S;

snid no more change can be made to S;
Output S;

end

Envelope Set

See Section 2.3.2.2 for the definition of Envelope Set.

INPUT: A set D of MVDs M and FDs F.
OUTPUT: The envelope set E(D) of D.
begin

1. Let F - F1, F2, ... , F,}, where there are
no F and F(1 < i,j < n) with the same LHS;

2. if(F = 0) then return (M);
3. Fj' = {X - Al, X - A2,...., X - A I Fj = (X - Y) E F

and Y = A1A2... Ai where
Ak(1 < k < j) is a single attribute);

F = U"=I F';
F" = {X -.. Y I X -- Y is in F';

4. M' M u F";
5. Let LHS(M') be IX1,X2, ... ,X};

M" = {X, - W, I X, E LHS(M') and Wp E DEPM,(Xj)};
NOTE: DEPM,(Xi) represents the dependency basis of
X, with respect to M'.

6. Delete X --- Y from M", if:
a) there is W -. Z in F such that W C X and Y C Z; or
b) there is S E DEPM,(X) and Y C S,

and thereis W-Z in Fsuchthat YC Z and WnS=@
7. Output M".

end.

FD/MVD Minimal Cover

The following algorithm generates the minimal cover of a set of MVDs. (See Section 2.3.2.3

for the definition of an MVD minimal cover.) In order to generate the minimal cover of a set of

dependencies which contains both FDs and MVDs, the envelope set of the dependencies must be

computed as shown in the above algorithm, and then provided as input to this algorithm.

INPUT: A set of attributes U and set of MVDs M on U.

.30

~!uXhrwnwt Jig% M'rx PFW. - -r - % W!IW VIWVWWWWW 4~7 W W" W.J Wy W W_ VI -. W~ .J _W F V - U-

OUTPUT: The minimal cover of set M.
begin
1. {eliminate reducible attributes)

For (each X E LHS(M)) do
begin
1.1. {elininate trivial MVDs}

For (each X - V E M) do
if(V C X or XV = U) then delete X -4. V from M;

1.2. {obtain right reduced MVDs)
Calculate DEP(X);
Replace X - V by X -- V1 I V 2 1 ... I Vn where
V1 V2 ... Vn = V and V(1 < i < n) E DEP(X);

1.3. {obtain left-reduced and transferable MVDs}
For (each A E X) do
begin

calculate DEP(X - A);
if (there is V E DEP(X - A) and V1 C VA) then

replace X --.---+ V by (X - A) - V V4;
end

end
2. {delete redundant MVDs}

For (each X - V E M) do
begin

M' = M - (X - V);
if (V E DEPM,(X)) then

delete X - V from M;
end

3. Output M;
end

4NF and BCNF Decomposition

Only one algorithm is needed to generate 4NF and BCNF decompositions. The schemes

generated by the algorithm are in 4NF if the input set of dependencies includes MVDs, and they

are in BCNF if the input set of dependencies includes FDs only. (See Section 3.4 for the definitions

of 4NF and BCNF.) The algorithm is preceded by pertinent definitions from [17].

* D: an input set of FDs and/or MVDs.

*e M: minimum cover of the envelope set E(D).

e M-: {X --- WIX -- W is a reduced MVD in M+).

e key.: LHS(M-).

31

* - ** '~~~ %%

. M': set of MVDs which results from randomly selecting one MVD

SX -4-- W from M- for each X E LHS(M-).

SM*: M* = M- - M'. M* is a 4NF covering of M [33].

e sp-ordering: a sequence of elements X1 , X2,... Xn is a sp-ordering if:

(1) Xi g Xj implies 1 < i < j < n, and

(2) if D logically implies X, -. X, but D does not

logically imply Xi --+ X*,

then 1 < i <j < n.

INPUT: A universal set of attributes U and M" ;
OUTPUT: 4NF decompositions over U;
begin

1. Let LHS(M*) = {XI,X 2 ,.. .,Xn} be in sp-ordering;
2. R {U;
3. For i= 1tondo

begin
if there is a U1 in R such that Ul is

decomposable with respect to X, - Y in M"
then replace U1 by U1 nXIY and Ul - (Y - X,);

end
4. Output R;

end

4.2.2 SNF Decomposition, Minimal Cover, Membership Algorithm, Attribute Closure. An-

other database design tool which was available at AFIT (see reference [15]) contains a 3NF algo-

rithm which was considered for implementation in the toolbox. However, analysis of the algorithm

revealed that it did not compute closures when performing left reductions and when eliminating

redundant attributes. This could lead to generation of schemes which are not in 3NF. Specifically.

as described in Section 2.3.1, in order for a set of FDs to be minimal, the LHS of each FD must be

reduced. That is, if an attribute can be removed from the LHS of an FD without changing F + , then

the extraneous attribute must be removed [16]. The algorithm in [15] does not remove attributes

32

and then compute the closure, it just looks to see if a subset of the LHS of an FD determines the

same RHS and is an FD in the given set. If so, the FD with the larger LHS is removed. The

problem with this is that FDs may be implied by the LHS which are not present in the set of FDs,

and so extraneous attributes may be left in the LHS if the implied FD does not exist explicitly.

For example, if the given set of FDs, F, is:

'I,

AB - D

B-.C

C-.D

AB -. D should be reduced to B -. D since B -. D is implied by B - C and C - D through

transitivity. However, the algorithm in [15] will not reduce AB -. D because B - D does not exist

explicitly in F, and the algorithm does not compute the closure to see if B -. D is in F+ . The

relation created for AB -- D (i.e., ABD) is not in 3NF since a subset of the MIS of AB - D also

C. determines D. That is, all nonkey attributes of ABD (i.e., D) are not fully dependent on the key

(i.e., AB). (see Section 3.4 for definition of 3NF). Since a 3NF relation cannot have any attribute

that is functionally dependent on only part of the key (such as B - D in the example), ABD is

not in 3NF, and thus the database design is not in 3NF. Thus, it is necessary to compute attribute

closure for the normalization process since implied dependencies can cause relation schemes to not

be in a certain normal form.

Another problem with the 3NF algorithm implemented in [15] is no steps are taken to ensure

all attributes in the universal set of attributes are represented in a relation. For example, if the

given set of FD9, F, is:

AB - D

B-C

C-.D

33

.B-.

. t B - D

AB -+ D will be eliminated since B -- D is explicitly represented in F. However, now no FD

in F contains attribute A, so when relations are generated for each FD, no relation will contain

attribute A. This problem also occurs if the universal set of attributes contains attributes which

are not contained in any of the FDs which hold on those attributes. For example, if the universal

set of attributes is A B C D E and the set of FDs which hold on the attributes is:

AB -- D

* B-C

C-.D

Then, since no FD contains E, no relation generated will contain E.

Due to these problems, other 3NF algorithms were reviewed for implementation. Other 3NF

algorithms examined [5,8,16,3] all started with finding a minimal cover as the first step, therefore,

it was essential to find an efficient algorithm for computing a minimal cover.

A linear time, 0(n), membership algorithm which can be used to produce the minimal cover

is presented in [3]. The purpose of the membership algorithm is to determine if an FD is in the

closure of a set of FDs. Thus, the membership algorithm can be used to left reduce FDs, and to

remove redundant FDs from the set of FDs in the following manner.

The linear time membership algorithm can be used to left reduce FDs, that is, to remove

extraneous attributes, B, from the LHS of an FD (say, LHS -- A) by testing to see if (LIS -

{B}) -- A is in F+ .A simple procedure for accomplishing left reduction follows [3]:

Left Reduction of FDs:

X'= LHS of an FD
do for each B E LHS of the FD;

if(X' - {B} -. A is in F +)

then X' = V - {B}
end

34

The time complexity of the left reduction procedure is derived as follows in 13]. The set of

FMe, F, contains FDs {fl,f2,... ,fJ. Each FD f has attributes on its left hand side and right

hand side from the universal set of attributes {A1 , A2 ,... , A}- If the attributes are represented

by integers {1, 2,..., m}, then F can be represented as a string of pairs of integers representing the

LHS and RHS of each FD. The length of this representation of F is denoted by IFI.Additionally.

since each attribute in an FD f appears in at least one FD (i.e., at least in f), then If I<_ IFI,

where IfI denotes the number of attributes in f [3].

In the left reduction procedure, each extraneous attribute is eliminated in time O(IFI) since

the membership algorithm can compute the closure of a set of attributes in time O(IFI). (The

analysis of the membership algorithm is given below). Then, since each attribute on the LIIS of

each FD must be checked, the entire reduction procedure for the set of FDs, F, takes time O(IF12)

[3].

The membership algorithm can also be used to eliminate redundant FDs by testing to see if

an FD, f, is in the closure of F - {f} [3]. The following procedure can be used to remove redundant

FDs from F [3]:

Delete Redundant FDs:

begin
G=F;
do for each f E F;

iff E(G-{f})+ thenG=G-{f)
end

'a

The time complexity of the above algorithm is O(nIFI), where n is the number of FDs in F"a
-[3]. This follows from the fact that the membership algorithm must be executed once for each FD

in F.

35

.4 .,"., The linear time membership algorithm is shown in the following pseudo code as it is presented

in [3]:

Linear Time Membership Algorithm for FDs:

INPUT: A set F of n FDs on attributes {A 1 ,...,Am} and
an FD f: X - A.

OUTPUT: "YES" iff E F+; "NO" if f E F + .

DATA STRUCTURES:

1. Attributes are represented by integers between 1 and m.

2. FDs in F are represented by integers between 1 and n.

3. LS[1:n, RS[I:n] are arrays of sets containing the attributes on the left and right sides of each
FD.

4. DEPEND is a set of attributes found to be functionally dependent on X so far.

5. NEWDEPEND is a subset of DEPEND that has not yet been examined.

6. COUNTER[I:n] is an array containing the number of attributes on the left side of each FD
that have not yet been found to be in DEPEND.

7. ATTRLIST[I:m] is an array of lists of FDs specifying for each attribute the FDs with that
attribute on their left sides.

ALGORITHM:

begin
INITIALIZE: do i = I to m;

ATTRLIST[m] = 0
end
do i = 1 to n;

COUNTER[t] = 0;
do for each j E LS[i];

ATTRLISTU] = ATTRLIST[j] U {i);
COUNTER[tj = COUNTER[i] + 1;

end
'- end

DEPEND = X;
NEWDEPEND = DEPEND;

FIND.NEW.ATTR:
do while (NEWDEPEND 0 9)

select NEXT-TOCHECK from NEWDEPEND;
NEWDEPEND = NEWDEPEND - {NEXTTOCHECK};

CHECK-FDS:
- do for each i E ATTRLIST(NEXTTO.CHECK)

36

% -~..******

COUNTER[i] = COUNTER[,1 - 1;
€-'J"if (COUNTER[i] = 0)

then do for each j E RS[i];
if (j E DEPEND)
then begin

DEPEND = DEPEND U {j};
NEWDEPEND = NEWDEPEND U {fj}

end
end

end CHECKYDS
end FIND.NEW.ATTRS

PRINT:
if A E DEPEND

then print "YES"
else print "NO"

end

The time complexity of the above algorithm is derived as follows [3]. The INITIALIZE routine

has a time complexity of O(IFI) since it basically consists of stepping through each FD in F and

performing a constant set of operations for each attribute in the LHS of the FDs. The complexity

of INITIALIZE is added to the complexity of FINDNEWATTR which is O(jFI) since "for each

attribute in NEWDEPEND, the FIND.NEWATTR loop follows a constant number of steps for
'-

each occurrence of that attribute on the left side of an FD in F. Similarly, each right side of an

FD in F is visited at most once in FIND-NEWATTR"[3, page 47]. Thus, the time complexity of

FIND.NEW.ATTR is O(IFI) so the time complexity of the entire algorithm is O(IFI) [3].

The above algorithms for left reduction, deleting redundant FDs, and computing member-

, ship met all three of the algorithm selection criteria. That is, they all had a reasonable time

complexity, reasonable estimated implementation time, and the pseudo code was available in the

literature. Therefore, they were chosen for implementation in the toolbox to support the mini-

mal cover function, the 3NF decomposition function, the membership algorithm function, and the

attribute closure function.

Now, with an efficient way to find out if FDs are in the closure of a set of FDs, the minimal

cover algorithm can be implemented in the toolbox as follows:

37

!11,I , jT.jj .V V W ;,V . WV , .. Y'.:', -'j., .J',V.,. 'V: '. ,V,* . ,,. .. w. w .= . uv f'

FD Minimal Cover:

INPUT: a set F of FDs.
OUTPUT: a minimal cover of F.

begin
right reduce FDs (i.e. ensure each FD has only one attribute on its RHS);
left reduce FDs;
delete redundant FDs;

end

The time complexity of the minimal cover algorithm is derived as follows. The right reduction

procedure has a time complexity of O(IFI) since it consists of stepping through each FD in F and

performing a constant number of operations based on the number of attributes in the RHS of each

FD. Then, as stated above, the time complexity of the left reduction is O(IFI2), and the time

complexity of the deletion of redundant FDs is O(nIF) where n is the number of FDs in F. We

know that n < IF because each FD must contain at least two distinct attributes since the minimal

cover algorithm removes trivial dependencies such as A -- A. Therefore, IF will always contain

at least two attributes for each one FD, and so iFj will always be larger than n. Thus, the time

complexity of the entire algorithm is O(IF2).

The 3NF decomposition algorithm selected for the toolbox is adapted from an algorithm

presented in [161. However, the following two steps were added to minimize redundancy. First,

'4 schemes with identical keys were merged into single schemes. And second, when duplicate schemes

occur, one of them is eliminated. (Note: duplicate schemes will occur when two FDs in F have

equal inverted LHS's and RHS's, such as A -- B and B -. A. They will both result in scheme AB

so one of the AB schemes should be eliminated.) The pseudo code for the 3NF algorithm follows:

3NF Decomposition Algorithm:

INPUT: a universal set of attributes (universal relation scheme)
and a set F of FDs which hold on the universal attributes.

OUTPUT: a set of relation schemes R in 3NF.

F, = a minimal cover of F
=' 0;

38

for each FD X - Y in F, do
begin

= -R U {XYJ
end

Combine schiemes in IZ with identical candidate keys;

if none of the schemes in 7? contains a candidate key for R
then begin

1R = IZ U {any candidate key for R};
end

if two schemes are equal
then delete one of the schemes

return(7)

The time complexity of this 3NF decomposition algorithm is derived as follows. The minimal

cover procedure has a complexity of O(IFI2), as described above. Then, building a scheme for each

FD is of O(n), where n is again the number of FDs in F, since this function merely scans the set of

FDs F and performs a constant number of operations for each FD to create the schemes. Merging

schemes with identical keys has a time complexity of 0(n ') since the key of each scheme (one scheme

per FD) must be compared to the key of each of the other schemes and then a constant number of

operations are done when two schemes' keys are identical. Next, ensuring that at least one scheme

contains a candidate key requires two steps. First, the relations must be scanned to see if one of

them already contains a candidate key. This is done by using the membership algorithm .o see if

.ne key for the particular scheme determines all of the attributes of the universal relation. Thus,

since the membership algorithm's complexity is O(IFI), and the worst case number of schemes

is equal to n (that is, if no identical keys were merged), then the time complexity of searching

the relations for one that contains a candidate key is 0(nIFI). Second, if no relation contains a

candidate key, one must be found and put into a new relation. A candidate key can be found

by creating a trivial FD with both the LHS and the RHS equal to the universal set of attributes,

then left reducing the trivial FD. This leaves a LIIS which determines the entire set of attributes

but does not contain any extraneous attributes. Thus, the LHS is a candidate key. This process

39

% -

has a time complexity of O(F12) since it basically involves executing the left reduction algorithm

one time. The last function, removing duplicate schemes, is of O(n 2) since each scheme must be

compared to every other scheme. Since we know that n < IFI, as described above, then n < IFL,

n2 < IF12 , and n2 < nIFI. Thus, combining the time complexity of each portion of the algorithm

results in a time complexity of O(IF 12) for the entire 3NF decomposition algorithm.

Another 3NF algorithm is presented in [3], however, since its execution time is also O(IF 2)

[3], it offered no advantages over the algorithm described above, and thus the above algorithm was

selected for implementation in the toolbox.

The membership algorithm function and the attribute closure function were both implemented

using the linear time membership algorithm described above. The membership algorithm function

could of course use the algorithm directly. The attribute closure function could be implemented

using the membership algorithm because when the algorithm terminates, the variable DEPEND

* . contains the closure of the LHS of the FD passed to it. Thus, to compute the closure of a set of

, -- attributes X, the attribute closure function must simply pass the membership algorithm a trivial

FD X -- X. When the membership algorithm terminates, DEPEND will contain the closure of

X with respect to the given set of FDs. Since both functions basically consist of executing the

membership algorithm one time, they are both O(IFI) functions.

4.2.3 Instance of an Armstrong Relation. The function which generates instances of Arm-

strong relations contains several main algorithms. A review of the literature on Armstrong relations

revealed that only one source had published a description of the algorithms in enough detail to de-

velop a working function for the toolbox. The article [26] indicates that a tool which could generate

instances of Armstrong relations had been developed at UCLA, however, more recent information

indicates the tool no longer exists [20]. Since only one source of the algorithms was available, the

algorithm selection criteria did not need to be applied, and an analysis of the time complexity was

not necessary for comparison purposes. A description of the required functions and the pseudo code

40

WWWUWM W I 'N I FV~I.W'", lW"WW VWXJWV~vlwrY V W7VWX'UV w \W xr XvlUvlw UXJw~pWvl 'W ,IvtnW

for the required algorithms follows. The description and the pseudo code are drawn directly from

[26], and thus the presentation represents a summary of the work done by Silva and Melkanoff

The general steps required to generate an instance of an Armstrong relation are shown in the

high level pseudo code below. The code defines the driver for the entire function. The pseudo code

for each function listed in the driver is presented in subsequent sections.

Armstrong Instance Driver:

INPUT: a universal set of attributes (universal relation)
and a set of FDs and/or MVDs which hold on the universal
relation.

OUTPUT: an instance of an Armstrong relation for the given input.

begin
1. Set L = 0, where L is a counter used by the decomposition

algorithm in Step 2. A unique value of L is associated with
each relation generated, and the same value of L is associated
with the set of FDs which hold on each relation.

2. Decompose the universal relation into a dependency preserving,
lossless join decomposition.

I2 3. Rearrange the relations generated by the decomposition algorithm
so they are in a form which can easily represent the
relationships among each attribute.

4. Compute the minimum domain size of each attribute required to
represent the FDs and MVDs.

5. Build a unary relation for each attribute with the minimum number
of values in each relation.

6. Generate an instance for each relation in the database
scheme with each instance showing the appropriate relationships

between its attributes.

7. Compute the natural join of all the relation schemes to
create an instance of the universal relation. This instance is
an instance of an Armstrong relation.

8. Display the instance of the Armtrong relation to the user.
end

41

4.2.3.1 Integrated FD/MVD Decomposition. As shown in the steps above, in order

to generate an instance of an Armstrong relation, the universal relation must first be decomposed

into a dependency preserving, loesless join relation scheme. The decomposition algorithm used by

Silva and Melkanoff in [26] is defined by Melkanoff and Zaniolo in [21]. This same algorithm was

implemented in the toolbox because the remaining steps needed to generate the instance depend

on the specific cases which result from the Zaniolo/Melkanoff algorithm (explained below). Thus, if

a different decomposition algorithm was used, say the 4NF/BCNF algorithm already implemented

in the toolbox, the resulting schemes would not represent the cases which the other algorithms ini

the Armstrong relation function require, and thus all new algorithms would have to be written-

The pseudo code for the decomposition algorithm from [21] is shown below, and is preceded

by pertinent definitions.

elementary FD: an FD of R, X - A, is called elementary if A is not an element of X, and R

contains no X' - A where X' C X.

* elementary MVD: an MVD of R, X - Y is called elementary if Y is non-empty and disjoint

from X, and R does not contain another MVD, say X' - Y', where X' C X and Y' C Y

Note: according to the above definition, a trivial MVD can be elementary [34]. This is an

important point for the decomposition algorithm since it determines the elementary MVDs

which apply to specific schemes.

* multiple elementary MVDs: an elementary MVD of R is called multiple if R contains other

elementary MVDs with the same LHS; otherwise it is called single.

The following variables must be defined for use in the decomposition algorithm:

* W: the set of attributes to be decomposed.

" R(W): refers to the relation scheme consisting of the set of attributes W.

442

1 Ir ,wJ|u[7 ,:Y ,ur1.a ,,I . , :~.Nr:r~m PW~N1~~.~- ,~~~7.-M X ;WJ N' -'P -i .
,

A
,

W '
,

7W Ji
-
WJw

-
I W1 j -W ; WJ Vrv WI.-' -

'
W

T
1 -

'
" ;

* F: the set of elementary FDs of R(W), that is, the elementary FDs which hold on scheme

R(W).

* F: the set of elementary FDs in F having W as scope, where the scope of an FD, X - Y,

is {X U Y}. Thus, if an FD, X - Y, has scope W, {X U Y} = W.

* Fl: the set of elementary FDs of R[W1], where W1 C W. The decomposition algorithm

computes W1 when decomposing W.

" F2: the set of elementary FDs of R[W2], where W2 C W, and is also computed by the

decomposition algorithm.

" Gm : the set of multiple elementary MVDs of R[W].

* Gil: the set of elementary MVDs of R[Wl] which have right side disjoint from W2.

* G22: the set of elementary MVDs of R[W2] which have right side disjoint from W1.

" GF: denotes the set of MVD counterparts of F1UF2 (the MVD counterpart of a FD, X -Y,

is the MVD: X - Y.)
" F + : denotes the set of FDs implied by the set of FDs F.

" G + : denotes the set of MVDs implied by the set of MVDs G.

* A COVER: the set of atomic relations generated by the decomposition algorithm, where atomic

means the relations cannot be decomposed any further by this algorithm.

" ZCOVER: the set of all FDs associated with the relations.

" L: a counter which must be initialized to 0 in the calling program, prior to calling this

decomposition algorithm.

Decomposition Algorithm

INPUT: a set of attributes W, and a set of FDs and/or MVDs which
hold on those attributes.

OUTPUT: ACOVER and ZCOVER.

43

'4.

n.
,_ i U ,-*

procedure DECOMPOSE(W)
begin

STEP1: DETERMINE(F,GM);
STEP2: FLAG = false;

for each X -- A E F do
if XU{A} = W then

begin
FLAG = true;
ZCOVER = ZCOVER U {L: X -A;

F = F - {X - A)
end STEP2;

if G.. = 0 then
STEP3:

begin
ACOVER = ACOVER u {L: W);
Le=L +SE;

end STEP3;
else

STEP4:
begin

NOTFOUND = true;
for each X - Y E G.. while NOTFOUND do

begin
W1 = X UY;
W2= W-Y;
COMPUTE(F1, F2, GF, G1, G22);
if (F- F.) C (F1 U F2)+ and

Gm C (GF U G1l U G22) + then
begin

if FLAG then L = L + 1;
DECOMPOSE(W1)
DECOMPOSE(W2)
NOTFOUND = false;

end
end;

if NOTFOUND then REPORTFAILURE
end STEP4

end DECOMPOSE;

The decomposition algorithm will call the REPORTFAILURE routine if it cannot find a

suitable decomposition which will preserve all dependencies. Otherwise, it will generate a set of

relations (referred to as the ACOVER), and the set of FD which hold on those relations (referred

to as the ZCOVER). The ZCOVER is a minimal cover of the FDs which were given to hold on the

universal set of attributes.

44

The DECOMPOSE algorithm generates relations which can have the following relationships

among their attributes [26].

* one-to-one: every different X value corresponds to a different Y value, that is, X -. Y and

Y- X.

* many-to-one: one or more X values may correspond to the same Y value, but no X value

corresponds to more than one Y value, that is, X -. Y and Y does not determine X.

* many-to-many: X does not determine Y and Y does not determine X. That is, one or more

X values may correspond to the same Y values and one or more Y values may correspond to

the same X value.

* combined relationships: a combined relationship exists among three combinations (sets of

attributes) X, Y, and Z when {X, Y} -. Z and one of the following cases occurs:

1. Z-.-.XandZ-.--.Y

2. Z-. X and Z- Y

3. Z-- X and Z- Y

In order to generate instances of relations which have the above types of relationships, the

relations and their associated FDs must be rearranged as follows.

4.2.3.2 Rearrangement Procedures. As shown in the driver for the Armstrong in-

stance, after the decomposition process, the relations must be rearranged to facilitate generation

of the instance. Each rearrangement procedure is described below as it is presented in [26]. Addi-

tionally, each procedure is represented by pseudo code following the description.

Rearrangements Due to One-to-One Relationships

"If there is a one-to-one relationship between two combinations X and Y that is X -. Y and

Y'- X, and IXI > 1 or [YI > 1, then there may be an FD X -- Y or Y - X in the ZCOVER

45

PrVWVWTW'AW-%W-WWW~~ WigW.7VVWW P WW U rW;WWUWWVV~

4I
without an associated atomic component, and IxI or IYI additional FDs in the ZCOVER with

associated atomic components. The ACOVER and ZCOVER must be rearranged so that only one

atomic component appears with two FDs with equal inverted left and right hand sides."[26, page

1201

The pseudo code for this operation follows.

begin
If there are two FDs, X -. Y and Y -- X, in the

ZCOVER and [IXI > 1 or IYI > 1].
then

1. Search the ZCOVER for an FD, X - Y or Y - X,
which has no associated relation in the ACOVER.

2. Then search the ZCOVER for IXI or IYI additional FDs
which have relations in the ACOVER.
(NOTE: this will occur if the RHS of one of the FDs
had more than one attribute since the FD will be right
reduced into IRHSI FDs).

3. Merge all schemes found in Step 2 into a single scheme
by computing the union of the attributes in the schemes,
and add the single scheme to the A COVER.

4. Associate the two FDs, X -- Y and Y -- X
in the ZCO VER, with the single scheme just added
to the ACOVER.

end

Rearrangements Due to Many-to-One Relationships

"If there is a many-to-one relationship between two combinations X and Y, that is, X -Y 1

and IYI > 1, then there may be IYI FDs in the ZCOVER. The ACOVER and ZCOVER must be

rearranged so that only one atomic component with one associated FD appears."[26, page 120]

"If X - Y is an FD associated with atomic component R[X,Y), Z - W is another FD

associated with atomic component R[Z, W and X contains Z, the A COVER and ZCO VER must

be rearranged so that only one atomic component R[X, (YUW)] appears with the FDs X {YUW}

and Z - W."[26, page 120]

These two steps are accomplished by the following pseudo code.

46

begin
If there is an FD, X -- Y, in the ZCOVER, and IYi > 1,

then merge all schemes which have X as their key (that is,
merge equivalent keys).

For each FD X - Y in the ZCOVER associated with R[X,Y] in the ACOVER
begin

For each FD Z -. W in the ZCOVER associated with R[Z, W] in the A COVER
begin

If Z C X
then

add R[X, (Y u W)] to the A COVER
and the associated FDs X -. {Y U W}
and Z -. W to the ZCOVER;

delete R[X, Y] and R[Z, W] from the A COVER
and the associated FDs X -* Y and Z -- W
from the ZCOVER;

end
end

end

Rearrangements Due to Combined Relationships

"If there is a combined relationship among combinations X, Y, and Z, then there is an FD

{X,Y) -. Z in the ZCOVER with no associated atomic component and 2 atomic components

R[X, Z] and R[Y, Z] which belong to one of these three cases:

1. R[X, Z] and R[Y, Z] have no FDs.

2. R[X, Z] has no FD and R[Y, Z] has the FD Z -. Y.

3. R[X, Z] has the FD Z -. X and R[Y, Z] has no FDs.

The A COVER and ZCO VER must be rearranged so that only one atomic component appears

associated with the FD {X,Y} -- Z. The MVD Z --- X is added to the ZCOVER if there is no

FD Z -. X, while the MVD Z --- Y is added to the ZCOVER if there is no FD Z - [26,

page 120]

The pseudo code for this procedure follows.

begin
for each FD {X,Y} -. Z in the ZCOVER

begin

.47
47

if there is no associated relation in the A COVER
then

add R[X, Y, Z] to the A COVER associated with
FD {X,Y} -- Z in the ZCOVER;

if R[X, Z] and R[Y, Z] are relations in the
ACOVER with no associated FDs
then

add MVDs Z - X and Z --- Y to the
ZCOVER associated with R[X, Y, Z]
in the ACOVER;

else if R[X, Z] has no FDs and R[Y, Z] has the FD Z - Y
then

add MVD Z - X to the ZCOVER associated
with R[X, Y, ZI in the A CO VER;

else if R[X, Z] has the FD Z -. X and
R[Y, Z] has no FDs

then
add MVD Z - Y to the ZCOVER associated

with R[X,Y, Z] in the ACOVER;
delete R[X, Z] and R[Y, Z] from the A COVER;

end
end

4.2.3.3 Compuling Minimum Domain Sizes. Once the ACOVER and ZCOVER are

rearranged, instances of each relation can be generated. However, before generating the instances,

the minimum domain sizes for each attribute must be computed to ensure the Armstrong relation

will be the minimum size relation which can represent all the relationships among the attributes.

The following algorithm is used to compute the minimum domain size for each attribute. As

defined in [26] for the algorithm, "F is a boolean variable which indicates if the computation is to

be done again. For each attribute A in relation R(V) there is a variable CT(A) which will contain

the minimum domain size when the algorithm is over. When processing an atomic component

R[X,Y], X and Y are respectively the left and right side of an FD X -- Y associated with R[X,Y].

SX and SY are respectively the cardinalities of relations R(X) and S(Y) corresponding to the left

and right sides of the FD with many-to-many relationships among their attributes. LX and LY are

respectively the indices of the last attributes (from left to right) of X and Y."[26, page 128]

The following algorithm is presented as it appears in [26, page 128]:

48

- . .

-* .1. [Initialization] F - TRUE. For each attribute A in V,

CT(A) .- 2.

2. [Repeat or terminate If F = TRUE then F - FALSE and

execute step 3, otherwise terminate the algorithm.

3. [Process atomic component] For each atomic component R[X,Y]

determine which relationship exists among its attributes:

If there are two FDs in the ZCOVER with equal inverted

left- and right-hand sides, then there is a one-to-one

relationship; execute step 4 and step 6.

If there is an MVD in the ZCOVER, then there is a combined

relationship; execute step 4 and step 7.

If there is one or more FDs with different alternated

sides and no MVD in the ZCOVER, then there is a many-to-one

relationship; execute step 4 and step 5.

If there is no FD in the ZCOVER then there is a many-to-many

relationship; so do nothing.

Return to step 2 after all atomic components have been processed.

4. [Compute SX, SY, LX, and LY] Let X --- Y be an FD in the

'4 ZCOVER associated with the atomic component R[X,Y].

SX - 1. For each attribute A in X, SX - SX+CT(A)-1.

SY - 1. For each attribute B in Y, SY - SY+CT(B)-l.

LX .- last attribute in X.

LY -- last attribute in Y.

5. [Many-to-one relationship]

For each attribute A in X, if CT(A) < SY then

49

"V2"' ,. . €" """

vwv

CT(A) '- SY+i, F - TRUE.

6. [One-to-one relationship]

For each attribute A in X if CT(A) < IYI then

CT(A) .- Y + 1, F .- TRUE.

For each attribute B in Y if CT(B) < IX I then

CT(B) - JXJ + 1, F -- TRUE.

If SX<SY then CT(LX) - CT(LX)+SY-SX, F - TRUE.

If SY<SX then CT(LY) CT(LY)+SX-SY, F - TRUE.

7. [Combined relationship]

For each attribute A of the atomic component R[XY), if

CT(A)<3 then CT(A) -- 3, F - TRUE.

If SY<SX-2 then CT(LY) .- CT(LY)+SX-SY-2, F - TRUE.

If SX<SY+2 then CT(LX) - CT(LX)+2-SX, F - TRUE.

4.2.3.4 Building Unary Relations. Once the minimum domain sizes are computed, a

unary relation is built for each attribute. The relation contains the minimum number of values

determined by the above algorithm. Then, instances for the relations which were generated by the

decomposition algorithm are built from the unary relations as described in the following section.

4.2.3.5 Generating Instances. Instances of each relation are built based on the type

of relationships which exist among its attributes. The procedures for constructing instances with

each type of relationship follow.

Construction of Instances with a Many-to-Many Relationship

A relation in the ACOVER has a many-to-many relationship between its attributes if there is

no FD in the ZCOVER associated with that relation. An instance of such a relation, say R(A,B,...),

50

R(A) S(B) T(A,B)

Al B1 Al B1
A2 B2 Al B2
A3 B3 Al B3

A2 BI
A3 BI

Figure 2. Instance with Many-to-Many Relationship between A and B

can be generated by creating an instance of R(A,B) with a many-to-many relationship between A

and B. And then, creating an instance of R(A,B,C) with a many-to-many relationship between A,B

and C. And then, an instance of R(A,B,C,D) with a many-to-many relationship between A,B,C

and D, etc. A many-to-many relationship can be created in the following manner as described in

[26].

"Given a relation R(X) with a many-to-many relationship among the attributes in X and a

unary relation S(A), a relation T(X,A) with a many-to-many relationship among all attributes in

X and A is constructed by concatenating the first tuple of R(X) with all tuples of S(A) and the

remaining tuples of R(X) with the first tuple of S(A)"[26, page 121].

For example, an instance of R(A,B,C) with a many-to-many relationship among its attributes

can be constructed as follows. Let the domain of A (denoted DOM(A)) = {A1, A2, A3}, DOM(B)

= {B1, B2, B3), and DOM(C) = {C1, C2, C3). Then, the instance will be generated in two steps.

First, an instance of T(A,B) will be created with a many-to-many relationship among its attributes

as shown in Figure 2.

Then, an instance of T(A,B,C) will be created as shown in Figure 3.

Construction of Instances with a One-to-One Relationship

An instance of a relation with a one-to-one relationship is generated from two relations con-

sisting of the attributes contained in the LHS and RHS of the FDs which hold on the relation. That

is, if the relation R(X,Y) has FDs X--Y and Y-X, then the instance is generathd from the two

51

N R(A,B) S(C) T(A,B,C)
Al B1 C1 Al B1 CI

Al B2 C2 Al B1 C2
Al B3 C3 Al BI C3
A2 B1 Al B2 C1
A3 B1 Al B3 C1

A2 BI C1
A3 B1 C1

Figure 3. Instance with Many-to-Many Relationship between AB and C

relations R(X) and S(Y), where X and Y are sets of attributes. If X contains only one attribute,

then R(X) is a unary relation which contains all values from the domain of the attribute in X. If

X contains more than one attribute, then R(X) is generated by creating an instance of a relation

with a many-to-many relationship between the attributes in X. The relation S(Y) is also created

in this same way. The instance of the relation with a one-to-one relationship among its attributes,

T(X,Y), is created from the two relations R(X) and S(Y) in the following manner as defined in [26].

1 . Set T(X,Y) to the empty set. Remove the first tuple of R(X) and the first tuple
of S(Y), concatenate them and insert the resulting tuple into T(X,Y).

2. If IxJ = I or IYI = 1 repeat step 3 until R(X) and S(Y) become empty. If lXi >
1 and IYI > 1, for each attribute A in X and each attribute B in Y execute step 4.
If some tuples still remain in R(X) and S(Y), repeat step 3 until R(X) and S(Y)
become empty.

3. Remove a tuple of R(X) and a tuple of S(Y), concatenate them and insert the
resulting tuple into T(X,Y).

4. If T(X,Y) does not contain two tuples with A-values = Al (first value in DOM(A))
but different B-values, execute step 5. If T(X,Y) does not contain two tuples with
different A-values but with B-values = 1i (first value in DOM(B)), execute step
6.

5. Remove a tuple from R(X) with A-value equal to Al and a tuple from S(Y) with
B-value different from BL, concatenate them, and insert the resulting tuple into
T(X,Y).

6. Remove a tuple from R(X) with A-value different from Al and a tuple from S(Y)
with B-value equal to B1, concatenate them, and insert the resulting tuple into
T(X,Y).

The following example from (26] shows the generation of a relation with a one-to-one rela-

tionship among its attributes. Let X - {A,B,C} and Y = {D,E}, DOM(A) = {A1,A2,A3,A4},

N

52

.I,,. ,-.-.-. _ .". -, .+.. . ',,--,, ',-. ' ,.-.".'. -"."..+.'-'.++"''..,. ''',. '' ; ',,.'." ,

R(A,B,C) S(D,E) T(A,B,C,D,E)
Al B1 CI DI El Al B1 C1 DI El
Al Bl C2 Dl E2 Al BI C2 D2 El
Al BI C3 DI E3 A2 Bl Cl Dl E2
A1 B2 C DI E4 A1 B1 C3 DI E3
Al B3 C1 D2 El A3 BI C1 D3 El
A2 BI C1 D3 El Al B2 CI DI E4
A3 Bl C1 D4 El Al B3 CI D4 El
A4 BI Cl D5 El A4 BI CI D5 El

Figure 4. Instance with One-to-One Relationship between ABC and DE [26]

DOM(B) = {BI,B2,B3}, DOM(C) = {CI,C2,C3}, DOM(D) = {D1,D2,D3,D4,D5}, and DOM(E)

= {EI,E2,E3,E4). Figure 4 shows the construction of an instance of T(A,B,C,D,E) with a one-to-

one relationship between {A,B,C} and {D,E}.

Construction of Instances with Many-to-One Relationships

Instances with many-to-many relationships are generated from two relations R(X) and S(Y)

which are constructed the same way as described above for one-to-one relationships. The relation

T(X,Y) is created as follows [26, page 124]:

1. Concatenate the first tuple of R(X) to the first tuple of S(Y).
2. For each attribute A in X (from right to left) do the following, where s is IS(Y)I,

a is IDOM(A)j (we must have a>s), and Al is the first value in DOM(A).

(a) Concatenate the first s-1 tuples of R(X) with A-value different from Al to
the second to sth tuples of S(Y).

(b) Concatenate the a - s remaining tuples of R(X) with A-value different from
Al to the first tuple of S(Y).

For example, if the relation R(A,B,C,D) has a many-to-many relationship between {A,B}

and {C,D}, the instance can be constructed as follows. Let DOM(A) = {Al,A2,A3,A4}, DOM(B)

= {Bl,B2,B3,B4}, DOM(C) = {Cl,C2}, and DOM(D) = {Dl,D2}. An instance showing the

many-to-one relationship is shown in Figure 5.

If a relation R(X,Y) has more than one FD associated with it, then one of the FDs must have

a scope of (X,Y), and the additional FDs Z - W are of the form Z C X and W C Y [261. This

53

R(A,B) S(C,D) T(A,B,C,D)
Al BI C1 DI Al BI C1 DI
AlB2 C1D2 AlB2C1D2
Al B3 C2 DI Al B3 C2 D1
Al B4 Al B4 C1 D1
A2 B A2 BI Cl D2
A3 B A3 BI C2 DI
A4 131 A4 BI Cl D

Figure 5. Instance of Many-to-One Relationship between AB and CD

T(A,B,C,D)
Al BI C1 Dl
Al B2 C1 D2
Al B3 C1 Dl
Al B4 C1 Dl
A2 BI C1 D2
A3 B1 C2 D1
A4 B1 C1 D1

Figure 6. Instance of Many-to-One Relationship between AB and CD, and A and C

(is due to the rearrangement procedures described in Section 4.2.3.2. To generate the instance in

this case, an instance is first constructed which shows the FD which has scope (X,Y). Then, the

instance is modified for the other FDs in the following manner. "In every tuple where, for each

attribute A E Z, the A-value is equal to Al (that is, the first value in DOM(A)), for each attribute

B E W t' e B-value is changed to B1 (that is, the first value in DOM(B))"[26, page 125]. For

example, in the instance shown in Figure 5, the FD with scope (X,Y), i.e. AB - CD, is already

represented. Then, if the FD A - C also holds on this relation, the instance will be modified as

shown in Figure 6.

In the modified instance, only the third tuple needed to be changed. This is because the

A-value was Al, so the C-value which was C2, had to be changed to C1. All other tuples with

-\" A-value = Al already had a C-value = C1.

54

M - -i..ar.-fl.".S• a A,.A . k a.-& k -

I % ,
-
n %

Construction of Instances with Combined Relationships

"An instance T(X,Y,Z) showing a combined relationship is constructed from the relations

R(X,Y) and.S(Z). We construct R(X,Y) by adding to an instance with a many-to-many relationship

between X and Y a tuple obtained by concatenating the last tuples of P(X) and Q(Y) which are

the relations corresponding to X and Y. If 1Xi = 1, then P(X) is the unary relation constructed

from the domain of the attribute in X. If IXI > 1, then P(X) is obtained by generating a relation

with a many-to-many relationship among the attributes in X. In the same way we obtain Q(Y) and

S(Z). Let p be IP(X)I, q be IQ(Y)I, and s be IS(Z)I. We must have p ! 3, q : 3 and s = p + q -

3."[26, page 1261

T(X,Y,Z) is created as follows [26, page 126]:

1. Concatenate the first tuple of R(X,Y) with the first tuple of S(Z).

2. Concatenate tuples 2, 3, ... , q-1 of R(X,Y) with tuples 2, 4, ... , s-1 of S(Z)
respectively.

3. If there exists an MVD Z- Y in the ZCOVER concatenate tuple q of R(X,Y)
with tuple 1 of S(Z).

4. Concatenate tuples q+l, q+2, ... , q+p-2 of R(X,Y) with tuples 3, 5, ... , s of S(Z)
respectively.

5. If there exists an MVD Z----X in the ZCOVER, concatenate tuple p+q-1 of
R(X,Y) with tuple I of S(Z).

6. If there exist MVDs Z--X and Z-*--Y in the ZCOVER, concatenate the last
tuple of R(X,Y) with tuple 1 of S(Z).

For example, let the FD AB - C and the MVDs C - A and C --- + B hold on the relation

T(A,B,C). Additionally, let DOM(A) = {AI,A2,A3}, DOM(B) = {B1,B2,B3), and DOM(C) =

{C1,C2,C3}. Then, a combined relationship exists among attributes A,B, and C. Construction of

an instance of T(A,B,C) showing this relationship is shown in Figure 7.

4.2.3.6 Compute Join of Relations and Display to User. As shown in the driver for

the Armstrong relation function (see Section 4.2.3), after an instance of each relation is generated,

the instances are joined on equal attributes (that is, the natural join of the relations is computed)

to create the instance of the Armstrong relation. An example of this join operation is shown in

55

S(A,B) R(C) T(A,B,C)
Al BI Cl Al BI C
AlB2 C2 Al B2C2
A1 B3 C3 A1 B3 C1
A2 B1 A2 Bl C3
A3 B1 A3 BI C1
A3 B3 A3 B3 C1

Figure 7. Instance with Combined Relationship between ABC

Section 4.2.3.7. After the instance is complete, the final step in this process is to display the results

to the i,ser.

4.2-.3.7 Example of Entire Construction Process. The following example, which is

based on an example presented in [26], shows the entire process required to generate an instance

of an Armstrong relation.

INPUT:

UNIVERSAL RELATION:

R(A,B,C,D,E,F)

FDs and MVDs which hold on the UNIVERSAL RELATION:

A-- B

A - CD

A -- *EF

AC - D

E -F

E -- ABCD

56

Step 1. Decomposition:

Decomposition of the universal relation is done using the algorithm described in Section

4.2.3.1. The algorithm yields the following output.

A COVER ZCOVER

1. R(A,B) 1. A - B

2. R(A,C,D) 2. AC - D

3. R(E,F) 3. E -- F

4. R(A,E)

Step 2. Rearrangement:

Relations 1, 2, and 3 of the ACOVER contain many-to-one relationships as shown by the

corresponding FDs in the ZCOVER. Relation 4 contains a many-to-many relationship since there

is no FD associated with it in the ZCOVER. There is no rearrangement necessary for relations with

many-to-many relationships, therefore relation 4 does not need to be modified. However, the rear-

rangement procedures described in Section 4.2.3.2 for many-to-one relationships must be applied.

Since none of the FDs in the ZCOVER have the same LHS, the first step of the rearrangement

procedure does not apply. That is, there are no equivalent keys to merge. The second step of the

procedure will discover that the ZCOVER contains the FDs AC - D and A -- B. Then, since A

C AC, the relation R[AC, (D U B)], i.e., R(A,B,C,D), is added to the ACOVER, the associated

FDs AC - D and A -- B are added to the ZCOVER, and the relations R(A,B) and R(A,C,D) are

deleted from the ACOVER. This rearrangement step ensures that all attributes determined by a

particular set of attributes, in this case attribute A, are in a single relation. The rearrangement

procedures yield the following output.

57

Attribute Domain Size Domain Elements
A 4 A1,A2,A3,A4
B 2 B1,B2
C 4 C1,C2,C3,C4
D 2 D1,D2
E 3 E1,E2,E3
F 2 F1,F2

Figure 8. Domain Sizes and Domain Elements

ACOVER ZCOVER

1. R(A,B,C,D) 1. AC- BD

I. A-,B

3. R(E,F) 3. E-- F

4. R(A,E)

Step 3 and Step 4. Compute Domain Sizes and Store Attributes in Unary Relations:

The minimum domain size for each attribute is computed using the algorithm shown in Sec-

tion 4.2.3.3, and then the domain elements are created and stored in a unary relation corresponding

V to each attribute. The output of these procedures is shown in Figure 8.

Step 5. Construct Instances:

Step 5.1. Instance for Relation 1:

Relation I contains two many-to-one relationships as represented by the corresponding FDs

in the ZCOVER. The instance for this relation, shown in Figure 9 is generated by the algorithm

described in Section 4.2.3.5 for many-to-one relationships.

58

T(A,C,B ,D)

Al C1 BI D2
Al C2 BI D1
Al C3 BI D2
Al C4 B1 D2
A2 Cl BI D1
A3 Cl B2 D2
A4 Cl BI D2

Figure 9. Instance of Relation 1

T3(E,F)
El F1
E2 F2
E3 F1

Figure 10. Instance of Relation 3

Step 5.2. Instance of Relation 3:

This relation also contains a many-to-one relationship as represented by the corresponding

4FD in the ZCOVER. The instance for this relation, shown in Figure 10, is also generated by the

algorithm described in Section 4.2.3.5 for many-to-one relationships.

Step 5.3. Instance of Relation 4:

This relation has a many-to-many relationship since there is no associated FD in the ZCO VER.

The instance for this relation, shown in Figure 11, is generated by the algorithm described in Sec-

tion 4.2.3.5 for many-to-many relationships.

Step 6. Compute Join:

Computing the join of TI, T3, and T4 on equal attributes produces the relation shown in

Figure 12. This is an instance of an Armstrong relation for the given input set.

59

T4(A,E)
Al El
Al E2
Al E3
A2 El
A3 El
A4 El

Figure 11. Instance of Relation 4

T431(A,B,C,D,E,F)
Al BI C1 D2 El F1
Al BI Cl D2 E2 F2
Al B1 C1 D2 E3 Fl
Al BI C2 Dl El F1
Al BI C2 Dl E2 F2
Al Bi C2 DI E3 F1
Al BI C3 D2 El F1
Al BI C3 D2 E2 F2
Al B1 C3 D2 E3 F1
Al Bl C4 D2 El F1
Al BI C4 D2 E2 F2
Al BI C4 D2 E3 F1
A2 BI C1 Dl El F1
A3 B2 Cl D2 El Fl
A4 BI C1 D2 El F1

Figure 12. Instance of an Armstrong Relation for Example Input

60

,., -5*

Since all of the algorithms described throughout Section 4.2.3 are required to create an in-

stance of an Armstrong relation, they were selected for implementation in the toolbox to support

the Armstrong relation function. The last algorithm needed for the toolbox, an alternative design

algorithm, is discussed in the next section.

4.2.4 Alternative Logical Designs. A literature review was conducted to determine if any

algorithms had been published to automatically generate all possible alternative 3NF database

schemes for a given set of attributes and functional dependencies. Although the literature review

did not reveal any published algorithms, many authors have pointed out that alternative 3NF

schemes can be generated with the various decomposition algorithms by:

1. Varying the order of the attributes on the LHS of FDs prior to the left reduction procedure

described above [31. This can result in different designs since the RHS may be functionally

dependent on two different sets of attributes. For example, if the set of FDs given to hold on

(O". a database were:

A B - D

C-.D

B-E

E-.D

then, both A -- D and B -. D are implied. Thus, if A is removed from the LHS of A B - D

first, then since B functionally determines D, A will be considered extraneous and therefore

permanently removed from the LHS leaving B - D. However, if B is removed from the LHS

first, since A -. D, B will be permanently removed from the LHS leaving A -- D. Since each

FD will ultimately be incorporated into a separate scheme, the order in which attributes are

removed from the LHS of FDs can potentially effect the final database design.

61

% r

W WV W W U 7717PA.'n '? l! xwyp v .

2. Varying the order of the FDs which hold on the database attributes prior to removing re-

dundant FDs can also effect the final design. Different orders of FDs have the potential to

generate different database designs for a similar reason to that of varying the order of the

LHS attributes described above. That is, removing certain FDs first can effect whether or

not other FDs are subsequently removed [3].

Thus, one approach to generating alternative database schemes could be based on varying

the order of the LHS attributes and varying the order of the given FDs, such as in the following

algorithm.

INPUT: Set of universal attributes and a set F of FDs which hold over those attributes.
OUTPUT: Set of alternative 3NF schemes.
ni = number of attributes on the LHS of each FD where i equals

1 to m and m is the number of FDs in the input set.

begin
1 Step 1: Compute the minimal cover of the input set of FDs;
2 Step 2: Compute the closure of each LHS;
3 Step 3: Right reduce the FDs;

Step 4: /* comment: generate designs */
4 Fori=ltom

begin
5 For each different order of the LHS attributes of FD,

begin
6 For each different order of the FDs in F

begin
7 Compu te 3NF schemes;

end
end

* end
end

The first step of the algorithm is required to reduce redundancy in the FDs which cannot

effect alternative designs. For example, the step will remove trivial dependencies and extraneous

attributes from the LHS of FDs which, if not removed at the beginning of the algorithm, must be

removed each time the 3NF algorithm is executed.

Then, Steps 2 and 3 are required because the 3NF design algorithm uses a minimal cover

algorithm which always produces a minimal cover that is a subset of the input set of FDs [3]. Thus,

62

_.2

the 3NF designs will always be based on subsets of the input set of FDs unless the the algorithm

first expands the set of FDs to the set of all FDs logically implied by F which have the potential to

effect alternative designs. The algorithm could compute the closure of the set of FDs, that is, the

set of all FDs logically implied by F by applying the following rules which are known as Armstrong's

axioms [16]:

" Reflexivity rule. If X is a set of attributes and Y C X, then X --* Y holds.
" Augmentation rule. If X - Y holds and W is a set of attributes, then WX - WY

holds.

" Transitivity rule. If X -* Y holds, and Y --* Z holds, then X -- Z holds.

However, computing the closure is not necessary because it generates many FDs which will

not effect the final schemes. For example, all of the FDs generated by the reflexivity rule are trivial

FDs since the RHS is a subset of the LHS, and thus these FDs will always be removed from F

by the minimal cover algorithm when it deletes redundant FDs. Thus, these FDs will never effect

the final scheme. Therefore, Step 2, using the attribute closure algorithm defined in Section 4.2.2,

will compute all the FDs implied by the LHS attributes of each FD using the augmentation and

transitivity rules, and will thus be sufficient to generate all FDs logically implied by F which have

the potential to generate different alternative database schemes.

Step 4 generates the schemes; however, this part of the algorithm has the potential to be

prohibitively time consuming. That is, the number of designs generated will become quite large

as the number of FDs increases and the number of attributes on the LHS of each FD increases.

Specifically, the execution time of line ' is directly related to rn! since there are m! possible orders

of m FDs, and the execution time of line 5 is directly related to nh! since there are n,! possible

orders of n, attributes in the LHS. Then, since line 6 is inside a loop controlled by line 5, which will

be executed ni! times, the two loops will execute a number of times on the order of (E[l ni!)m!.

The execution time of an algorithm which performs a factorial x factorial number of operations

will increase very rapidly as the input sets grow larger. For example, if the input set consists of 3

FDs where each LHS of the FDs contains 3 attributes, the loops would execute 3! x 3! = 36. But,

63

if the input set consists of 6 FDs where each LHS contains 6 attributes, the loops would execute 6!

x 6! = 518,400 times. Then, likewise, 7! x 7! = 25,401,600 times. Obviously, as n and m increase,

the algorithm will generate an extremely large number of database designs and could potentially

take a significant amount of time to finish. Another problem which must be considered is that

many of the designs generated would be identical since varying the orders of the LHS attributes

and the FDs will only produce different designs in some cases. Therefore, much of tie excessive

time and space requirements of the algorithm would be wasteful.

Due to the problems with this approach, it was obvious that the number of database designs

generated must be reduced. Since many of the designs generated would be identical, one way to

reduce the number of database designs would be to never generate the identical schemes. This

approach requires that the algorithm include some type of "rules", i.e. heuristics, so that only the

orders of FDs and LHS attributes which will cause different designs are tried. Thus, in order to

determine what the "rules" for the algorithm must be, the toolbox had to include a function which

could support the research in this area.

Since the generation of alternative designs is based on varying the order of LHS attributes

and FDs, the toolbox function needed to allow the user to vary these factors so the resulting effects

on the designs could be analyzed. However, since the number of attributes on the LHS of an FD

will typically be small (e.g., 1-3), the majority of different designs will most likely be a result of

varying the order of the FDs rather than the LHS attributes. Thus, the toolbox was designed so

that the 3NF design function includes an alternative design option which allows the user to vary

the order of the FDs to study the effect on the final design. The function is designed so it can

later be enhanced so the user can vary the LHS attributes. Once the heuristics are determined,

they could either be incorporated into an algorithm which automatically generates all alternative

designs, or incorporated into an interactive user interface which provides the user with guidance

on ways to generate other designs.

64

The BCNF/4NF design algorithm used in the toolbox can also be used to generate alternative

designs; however, the algorithm generates database schemes based on MVDs rather than FDs as in

the 3NF algorithm. Thus, the heuristics for an algorithm to generate alternative BCNF and 4NF

schemes will most likely be different than those for alternative 3NF designs, and therefore, research

should be conducted to determine the heuristics for both of these cases.

4.3 Data Structures and Files

4.3.1 Data Structures. The first step in selecting the data structures for the toolbox was

to analyze the algorithms to determine the type of operations done most often. Then, based on

those operations, determine the type of data structures which could support those operations most

efficiently. For example, if the algorithms frequently perform searches, an efficient data structure

would be a binary search tree since "a binary search tree provides the flexibility of a linked list

and allows quicker access to any node than a linked list" [23]. However, if the algorithms typically

look at every item in a list, then every node must be visited and therefore a binary search tree

would provide no advantage over a linked list structure, and thus the overhead of building and

maintaining the search tree would be wasteful.

Analysis of the algorithms selected for implementation in the toolbox revealed that, in general,

the algorithms frequently must step through every dependency to accomplish their specific function.

For example, the algorithm which generates the minimal cover of a set of MVDs must step through

every dependency to eliminate trivial dependencies, right reduce, left reduce, and then eliminate

redundant dependencies. The algorithm to compute the envelope set of a set of FDs and MVDs

also must step through each dependency. Additionally, many of the algorithms which support the

Armstrong relation function also examine every dependency. Another type of operation that occurs

frequently in the algorithms is insertion and deletion of dependencies in lists of dependencies.

65

E7II

The analysis of algorithms also revealed that sorting the dependencies and searching for

a specific dependency do not occur frequently. However, the membership algorithm performs

operations which require quick access to specific dependencies, and the Armstrong relation function

requires unique data structures for storage of relations.

Thus, it was determined that the universal attributes, the FDs, and the MVDs should be

stored in linked list structures so algorithms could easily step through each one. Although array

structures were considered, they were not selected for storing the FDs, MVDs, and attributes be-

cause the size of the input sets will be dynamic and linked lists are better suited for operations which

require dynamic memory allocation. Additionally, linked lists are better structures for frequent in-

sertion and deletion operations, and are therefore a better choice of data structures than arrays

for the required operations. Since the membership algorithm and the Armstrong relation function

require unique data structures, the structures for these functions can be built from attribute and

dependency data stored in the linked lists.

(. -For the membership algorithm, it is critical that the data structures support quick access to

specific dependencies. The general data structures needed to support the algorithm are defined in
S.'

[3]. Since this algorithm will be used extensively in the toolbox, it is critical that it executes fast.

Therefore, the data structures used by the algorithm should mainly be arrays so the algorithm can

use indexing to directly access specific items. Linked lists or trees would require searching, so the

algorithm would take longer to access specific items.

* For the Armstrong relation function, a linked list structure is best suited for storage of the

relations. This is because most of the operations on the relation list involve stepping through each

relation, inserting relations in the list, and deleting relations from the list. Each relation structure

will contain a pointer to a list of tuples. The Armstrong relation function performs many operations

on tuples such as concatenating tuples and joining tuples on equal fields which require that the

66

program know exactly where to find the value of each attribute in the tuple. Therefore, each tuple

is stored as an array so the function can index directly to each attribute value.

4.3.2 Files

4.3.-2.1 Input Files. As stated in Chapter III, one of the long range objectives of the

toolbox is to serve as a normalization tool in a suite of stand-alone database design tools developed

at AFIT. Therefore, the file formats used by the toolbox must be designed to provide a standard

interface so database attributes and constraints can be passed between all tools.

The method chosen to accomplish this objective was to define the format for text files which

will be input into the toolbox. Then, if a tool such as an ER diagramming tool wants to "interface"

with the toolbox, it would simply have to store its output in a text file in the proper format so the

toolbox could read it. If the ER diagramming tool only stored a set of universal attributes in the

file, then the user could add constraints (dependencies) to the file through file update functions in

the toolbox.

The specific format of the input files used by the toolbox was originally defined in [17]. The

file format was adopted for use in the toolbox for several reasons. For one thing, the format is

easy to read and understand. Additionally, [17] had already defined the grammar and syntax of

the input files for the UNIX ler and yacc functions. The fex function, or lexical scanner, is used

to verify the grammar of the input file and find tokens for the syntax parser yacc. Y'acc is used to

verify the syntax of the input files, notify the user of errors in the input file, and store the universal

attributes, FDs, and MVDs in linkd list structures. Thus, the file format from [17] was adopted,

and the parser (yacc) is used to identify format errors when files are created, updated, or files are

named " input files for a toolbox function. Examples of the file format are shown in Appendix D.

4.3.2.2 Output Files. The output of the 3NF, 4NF, BCNF, and Armstrong relation

functions are displayed on the screen and are also written to files for later reference. To help the

67

_ user identify these files, the system names them by using the input filename plus one of the following

extensions: 3NF, 4NF, BCNF, arm, respectively. Examples of the formats and sample output are

shown in Appendix D.

4.4 User Interface

The user interface was designed for the target user defined in Chapter III. That is, the

interface is designed for users who are familiar with dependency theory and normalization concepts.

Therefore, the interface frequently uses technical terms which assume a working knowledge of

dependency theory.

Since user interface issues were not central to the goals of this thesis, a simple menu system

was adopted. The interface is designed so the user will need minimal assistance from the user's

manual to operate the system. The menus present all available options at each level, and they

. allow the user to return to the previous menu. The menus provide the system with a structured

interface so the user always knows what the options are, and how to get back to the main menu.

User interface issues were not central to the goals of this thesis, therefore, a simple menu system

was adopted.

i, Keyboard input was the only practical choice for data input capability since the users will be

working from a wide variety of terminal types, with varying input capability.

.. 6

' 68

a. iIltAti•1 I t l l
M

t~ll"i - " % . ,. . t," 1 ,, ,t. , - " .
a

, " . " , ' ~

V. Coding and Implementation

5.1 Hardware Configuration

The toolbox was developed and implemented on the ICC (Interim Computer Capability) at

AF1T for two critical reasons. First, since the toolbox will be used primarily as a teaching aid

and a research tool at AFIT, the program can be utilized by more users if installed on one of the

school's centralized computer systems. Second, since the toolbox includes many algorithms which

have a time complexity which is related to the size of the input set of universal attributes and

dependencies, the program needed to be implemented on the centralized system which executes the

most instructions per second. Therefore, the ICC was best suited for this application.

5.2 Language Selection

The toolbox was written in the C programming language for several reasons. First, C is well

suited for this type of application because it compiles into efficient executable code. Efficiency is

an important characteristic for the toolbox since the execution time of most of the algorithms is a

function of the number of attributes and dependencies in the input file, and thus, the algorithms

could potentially require relatively long execution times. Additionally, C code can easily te moved

to and cnmpiled on other AFIT systems. For example, the toolbox modules can be transferred to the

ASC (Academic Support Computer) and the SSC (Scientific Support Computer) in the exact same

form as they are on the ICC. Also, the code can be run on the LSI-11's with minor modifications

Finally, C was chosen because two readily available database design tools [17,19] were written in C,

and therefore, some of the routines and algorithms from those tools could be directly incorporated

into the toolbox if the toolbox was written in C. Using C as the programming language, therefore,

had the potential to reduce development time by several month:3. Thus, based on the above reasons,

C offered many benefits, and was therefore chosen as the programming language.

69

..

5.3 Coding

The software for the toolbox was written in a top-down, structured fashion. That is, the top

level modules were written first, with lower level functions stubbed out. Then, as development

progressed, each of the progressively lower level functions were completed, and then finally the

lowest level functions were completed. The program modules were organized into files based on

function. For example, the algorithms required to support the Armstrong relation function are in

one file, the algorithms required to support the 4NF/BCNF functions are in a separate file, the

code which drives the menus and the function interfaces is in another, etc. Organizing the modules

into files based on function will enhance the maintainability of the toolbox software.

J

70

% %

VI. Acceptance Testing

This chapter documents the testing phase of the toolbox development.

6.1 Scope of Testing

The main objectives of the testing phase focused on the following main software engineering

concepts:

. verification - verify that the product is built right based upon requirements.

. validation - validate that the code does what the user wants. That is, ensure we built the

right product.

Thus, the testing approach was based on the following specific objectives:

1. Ensure all toolbox functions produce accurate results.

2. Ensure the toolbox satisfies user needs.

6.2 Test Plan

Based on the specific test objectives, testing was divided into the following two phases:

Phase I Function Accuracy.

Phase II Operational Needs.

For the first testing phase, the test objectives could be met by creating specific test cases

which had a given input and a known output, and then comparing the output from each function

to the expected output. The input for the test cases had to be designed to represent a wide variety

of possible cases. Thus, a test procedure was set up for each toolbox function with the required

71

, ,, ,. ,. -. .. ., .. -.. . . .- -,... ,- . ,.. , . - - .' ' ? ... ,.

: : . 1F ,= n .V. V VJ .. , V w' '.JWIJV V V p rW V w M :LW W If W rVVV,- L.7 ' --WIrL

input and expected output specified for each test case. Each test procedure is documented in

Appendix D.

For the second testing phase, the testing criteria were not as clear cut as for the first phase.

That is, for the second phase, there were no clear lines between correct results versus incorrect

results. Thus, the approach taken to test whether operational needs were satisfied focused on

whether the toolbox accomplished the specific tasks specified in the user requirements documented

in Chapter III. And also, focused on an analysis of whether or not the toolbox had the potential to

accomplish the more broad tasks required by the user (i.e., serving as a research tool and a teaching

aid).

The results of the tests required for the first testing phase, and the analysis required for the

second testing phase are presented in Section 6.4.

6.3 Test Procedures

Each toolbox function was tested by inputting given input data into the function, and then

comparing the actual toolbox output to the expected output. The input and expected output for

each test are described in Appendix D.

6.4 Test Results

6.4.1 Results of Phase I. The actual output of the toolbox matched the expected output

for each of the test cases defined in Appendix D. Thus, the toolbox satisfies the test criteria for

Phase I of the testing phase.

6.4.2 Results of Phase 11. An analysis indicated that the toolbox provides all the functions

specified in the user requirements. Therefore, the toolbox meets the operational needs of the user

from the perspective that it provides the functions necessary to accomplish the tasks which were

defined in the requirements. Additionally, analysis showed that the toolbox has the potential to

72

-- ovum MTN" PRVYWM F WA MJI WI "M FWI WPll

accomplish the broader tasks defined in the requirements (i.e., serving as a research tool and a

teaching aid).

The toolbox can be used as a research tool in several ways. For example, the user can vary

the database specifications which are input into the various toolbox functions and study the impact

on the function output. Also, the toolbox provides a very good capability for the user to study and

research alternative logical designs since the 3NF design function allows the user to vary the order

of the FDs, and thereby create alternative 3NF designs. The BCNF and 4NF design functions also

allow the user to study alternative designs by letting the user change the order of the keys for the

schemes, thereby creating alternative designs. Thus, the user could analyze which order changes

actually create different designs. The effectiveness of the toolbox as a research tool depends on

the objectives of the specific experiments done, and the design of the experiments, therefore, it is

difficult to generalize about effectiveness. The toolbox would have to be examined in each specific

situation to obtain specific results, however, the toolbox has potential to facilitate research in some

areas.

The toolbox could also be used as a teaching aid in several ways. A student could study

the output of ie toolbox to learn the functions of the various database design algorithms, and

to analy:;e the results of varying the input. Additionally, the Armstrong relation function in the

toolbox could be used to teach students the concepts of functional dependency and multivalued

dependency. The effectiveness of the toolbox as a teaching aid would again depend on the specific

lesson plan, and the objectives of the lesson, and thus the toolbox would have to be examined in

specific situations to obtain specific results.

Thus, the analysis indicates that the toolbox performs the functions required to fulfill the

operational needs of the user; however, the actual effectiveness of the toolbox to serve as a research

tool and a teaching aid depends on many subjective factors which will depend on the specific

73

1,p -

situation and purpose for which the toolbox is used. Therefore, based on the analysis, the toolbox

satisfies the test criteria for Phase H1 of the testing phase.

74

%DSA~,% ~r~k* ~ ~ ''

VII. Conclusions and Recommendations for Further Study

7.1 Conclusions

Designing a database is a very time consuming and complex set of activities. Although re-

searchers have investigated implementing computer tools to assist designers in all phases of database

design, a significant effort has been applied in the area of logical design. This is because the process

of logical design is well suited for computer assistance because the process can be time consuming,

repetitive, and it can be structured into a clearly defined set of steps. Additionally, computer

assistance is needed in this area because much of the current dependency theory used to design

and study the logical structures of relational databases exists in the form of published algorithms

and theorems, and hand simulating these algorithms can be a tedious and error prone chore. The

literature review included in this study revealed that even though many researchers have developed

computer tools to assist database designers with the logical design of relational databases, there

are still many algorithms and functions which need to be incorporated into automated design tools.

Thus, the objective of this thesis investigation was to design and implement a computer tool which

automates some of these algorithms and functions.

The computer tool, or "Dependency Theory Toolbox", was designed for use in an academic

environment as a teaching aid and research tool, rather than for practical application to database

design problems. The toolbox provides many functions which allow the user to generate and study

database designs, and is specifically designed to support research in the area of alternative database

desig,,is. Much research is still needed in this area to define methods for automatically generating all

alternative designs for a given set of universal attributes and FDs which hold over those attributes.

Many authors have pointed out that alternative 3NF schemes can be generated by varying the

order of the attributes on the LHS of FDe prior to left reducing the FDs, and by varying the order

of the FDs prior to removing redundant FDs. Thus, one approach to generating all altern ve

database schemes could be based on varying the order of the LHS attributes and varying tile order

75

L rt //, ,,l -,.,, .',t~e ,oe . ,"_,';' .- '.., . , ' . ', ".... "-

Fo KI Kr afi' WV U ', -6 -J W- w'W W. .- W."

of the given FDs. However, such an approach has the potential to generate a very large number of

database designs since generating every possible order of n elements results in n! orders. So, the

number of orders, and thus, the number of designs, would increase very rapidly as the number of

attributes and FDs increases. Another problem with this approach is that many of the schemes

generated by this method would be identical since varying the orders of the LHS attributes and

the FDs will only produce different designs in some cases. Thus, in order for this approach to be

practical, a design algorithm based on this method must include some type of "rules", i.e. heuristics,

so that only the orders of FDs and LHS attributes which will cause different designs are used as

input. The toolbox was specifically designed to support research in this area by allowing the user to

vary the order of FDs so the resulting effects can be studied. The 4NF and BCNF design functions

also have similar functions.

The result of this thesis investigation was that the "Dependency Theory Toolbox" was suc-
.,

cessfully implemented, documented, and tested. The toolbox provides all the functions specified

in the requirements analysis, with the limitation that it does not generate all alternative logical

designs automatically. The toolbox does, however, include a function which allows the user to

generate alternative designs manually by varying the order of FDs input into the 3NF function,

and by varying the order of keys input into the BCNF and 4NF functions.

In conclusion, we see that even though a significant amount of effort has been invested in

'I studying the logical structures of relational databases, and in developing automated database design

aids, this area of database design still warrants further analysis and study.

7.2 Recommendations for Further Study

Although many database design algorithms were implemented in the "Dependency Theor.

Toolbox", there are still many other algorithms and functions which need to be incorporated into

automated design tools For example, the toolbox could be expanded to include algorithms which

76

determine if database schemes are dependency preserving, and if schemes can be joined without

losing information (i.e, check for a lossless join).

Additionally, research should be done to define the heuristics needed to determine which

orders of LHS attributes and FDs will cause different designs to be generated by the 3NF algorithm.

The research in this area could ultimately lead to better database designs since a database designer

could readily see all the available options, and thus choose the design best suited for the particular

application.

77

* 51 q ~, f~~ .,I t.f~rg.. r~ .~%9% /. '%.~&< . .Y \ ~ ~ - K "/

Appendix A. User's/Maintenance Manual

A.1 Introduction

This User's/Maintenance Manual documents the capabilities incorporated in the Dependency

Theory Toolbox, and explains how to use the functions provided. In general, the function of the

toolbox is to assist the user with designing and studying the logical structures of relational databases

and various related concepts of dependency theory. The system is intended for use in an academic

environment as a teaching aid and research tool rather than for practical application to database

design problems. However, the tool could be used to design small relational databases which have

a limited number of attributes.

In order to use the functions in the toolbox, the user must first create an input file which con-

tains database specifications. The toolbox allows the user to input database constraints (functional

dependencies and multivalued dependencies) and database attributes interactively or to specify

existing user files which contain the information. The user files can be created using the toolbox,

or can be generated by other design tools in the prescribed format (defined below). The system is

designed to accept existing files so that this toolbox can be used in conjunction with other database

design tools developed at AFIT. For example, if the Entity-Relationship diagramming tool which

was developed at AFIT, stored the entities and attributes which were specified in the diagram in

text files with the same format, the data files could be directly input into the toolbox.

A.2 Toolbox Location

The toolbox was developed and implemented on the ICC (Interim Computer Capability) at

AFIT. The ICC is an Elxsi 6400 computer. The toolbox is written in the C programming language,

and was implemented under the UNIX operating system, version 4.2BSD. Currently, the executable

code is sto-d on the SSC under the path name:

/course/course/ee646/dbtoolbox/dbtoo box

78

raw -nn-- UrW7KtrVMr ?.-wIURr, V- I,- V- VWVF 'W ,..r VnZLW 1 b -V- LM '

A.$ Compiling and Linking

If the source code must be moved to a new directory, the information which defines all required

files and system modules is documented at the beginning of file /course/course/ee646/dbtoolbox/main.c.

The file header at the beginning of this file describes all files required to build the toolbox, and

how to compile and link them.

The toolbox can be moved to other centralized AFIT systems which operate under the UNIX

operating system. The source files can be moved by using the UNIX 'rcp' command, and then

the executable program can be generated by compiling and linking the source code with the 'cc'

command.

The file named "makefile", which is included with the source code files on the SSC in directory

/course/course/ee646/dbtoolbox, contains all the specifications necessary to compile and link all

toolbox modules using the "make" UNIX command. The contents of "makefile" are shown in

Figure 13. The makefile defines all modules required to compile and link the toolbox, and shows

which modules depend on the contents of other modules. For example, the file shows that main.o

depends on the contents of header.h and global, and therefore, if these modules are changed, main.c

must be recompiled to update main.o. This update, and any others, will automatically take place

when header.h and global are changed by simply typing "make" at the UNIX prompt. Additionally,

the makefile shows the UNIX commands required to compile each module.

A.4 Start-up Procedure

To start the toolbox, type the following path name from a directory on the SSC where you

want the output files to be stored.

/course/course/ee646/dbtoolbox/d btoolbox

79

Rn~~ ~ W1PI"'PIr

toolbox: sain.o lax.yy.o y.tab.o utilityl.o utility2.o utility3.o fd..alg.o
BCIF..41F-.alg.o ara...rl .o

cc -g uain.o lex.yy.o y.tab.o utilityl.o utility2.o utility3.o
fd..alg.o BCFIF...Falg.o arm-.rel.o -11 -o toolbox

aain.o: inain.c header.h global
cc -c -g main.c

y.tab.h: yac
yacc -d yac

y.tab.c: yac
yacc yac

lex.yy.c: 1. y.tab.h
lax le

lex.yy.o: lex.yy.c y.tab.h header.h
cc -C -g lex.yy.c

y.tab.o: y~tab.c header.h1
cc -c -g y.tab.c

utilityl.o: utilityl.c header.h
* cc -C -g utilityl.c

utility2.o: utility2.c header.h
* cc -c -g utility2.c

utility3.o: utility3.c header.h
cc -c -g utility3.c

td..alg.o: fd..alg.c header.h
cc -c -g fd-.alg.c

DCWF.41Falg .0: BCNF-.41F-.alg. c header. h global
cc -c -g BCIF-.43P..alg.c

axm..r~l.o: axu-rol.c head~r.h
cc -c -g arm-.rl.c

Figure 13. Toolbox Makefile

80

Ne*1 . . .

H ? W'

If the path name /course/course/ee646/dboolbox is in your path in your .login file, then the toolbox

can be executed by simply typing dbioolboz followed by a carriage return (denoted by -CR- in the

rest of this manual). After you have typed "dbtoolbox -CR-", the system will display a welcome

banner and tell you to press return when you want to continue.

After you type return, the system will display the main menu which contains the following

options:

Main Menu

1. Create or Update Database Specification File

2. Generate Logical Structures

3. Accomplish Utility Functions

4. Exit Toolbox

_ This menu, like all other system menus, will be followed by the message:

Please type the number of your choice

In response to this message, you should type a number listed on the menu and then -('- If

you type a number which does not appear on the menu, the system will print an error ni,'ssag'.

and allow you to try again. Since all of the functions in Lhe toolbox require an input file which

contains database specifications, the user should choose option I the first time the toolbox is used

This will allow him/her to create the required file. This is necessary because when the user chooses

option 2 or 3. the system will ask for the input file name before executing the requested funci,'ii

The uer may exit the system from the main menu or any of the menus below it The functions

which are provided through the main menu are described in the following sectionis

J8

-o

A.5 Overview of User Interface

The user interface for the toolbox is menu driven. It is designed so the user will need minimal

assistance from the user's manual to operate the system. The menus present all available options at

each level, and they allow the user to return to the previous menu. The menus provide the system

with a structured interface so the user always knows what the options are, and how to get back to

the main menu.

Additionally, the interface is designed for users who are familiar with the process of relational

database design, and with dependency theory concepts related to database design. Each of the

utility functions provides a short description of the function's purpose prior to actually executing

the function. However, the user will find the toolbox much more useful if they review concepts

such as: minimal cover, attribute closure, envelope set, etc. either prior to using the toolbox or in

conjunction with using the toolbox.

(. A,6 Main Functions

Once the user types the number of an option on the main menu, the system executes the

appropriate function. Each function is described below.

A.6.1 Create or Update Database Specification File. This function allows the user to create

or update an input file which contains a set of universal attributes and a set of functional depen-

dencies (FDs) and/or multivalued dependencies (MVDs). The subsections below describe how the

options within this function allow the user to create files in the prescribed format, lowever. th,

operation of all the functions follows the same basic format. First, the options request the n al, ,-

of the required file(s). Then, once the file is created or retrieved, the file is displayed and t0,. usr

can input and edit data using a full screen editor using UNIX vi editor commands .ft,r 1 it,

is done editing a file, the toolbox will examine the file to ensure it is in th, jr.f r -I. T f

is, the system will return to the "Create or Update Dlatabase Sperificai i- i II, r'.

•8

-ftN 672 DEVEL PET OF A DEPENDENCY THEORY TOOLBOX FOR DMSSE 242
DESXIO(U) RIR FORCE INST OF TECH WRISHT-PRTTERSON W9I
ON C W STOIS8ERRY DEC 8? RFIT/GCS/ENO/B7D-26

UU N C MR i l F l D / O 1 2 / 2 M i.EEE,7hhh

NIENONhh~h

11111121

II 11 .8
11111_L251

L3 111114 %

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of SIANDARDS 1961 A

If

i. . ' -f ... " - VIP :-W - .W " W' W W * % . - _ W

lw ww w -

*.SWs SW ~ '%

is not in the proper format, the toolbox will display the file contents and, in most cases, tell the

user which line contains an error and what the error is. The system will then inform the user that

he may edit the file and try again, and will return the user to the "Create or Update Database

Specification" menu.

Some of the basic UNIX vi editor commands which can be used to create and edit input files

are listed in Figure 14.

A.6.2 Input File Format. The input files must be created in the format shown in Figures 15

and 16. This format was originally defined in [17], and has been adapted for use in the toolbox.

The following specifications define the format more precisely.

UNIVERSAL ATTRIBUTES:

The first data in the file must be a list of attributes followed by a period. The first attribute

may be preceded by any number of blank lines, or no blank lines.

* Legal characters: A-Z, a-z, 0-9, and - (i.e., underscore).

" Attributes must begin with a letter.

" Attributes can be strings of legal characters up to a maximum of 10 characters long.

* A maximum of 92 attributes can be specified in one file.

" Each attribute can be followed by any number of spaces or any number of carriage returns.

" List of attributes must end with a period. There can be any number of spaces, no spaces, or

a carriage return between the last attribute and the ending period.

83

* i - insert text just before cursor.

* I - insert text at beginning of line.

e esc - escape out of insert mode.

a a - append text just after cursor.

e A - append text at end of line.

o arrow keys - move cursor direction of arrow.

o control H - backspace.

o :n - where n is an integer line number. This moves the cursor to line number n.

to & x - delete the character under the cursor.

* dd - delete the entire line which the cursor is on.

e o - open a new line under the line where the cursor is.

* 0 - open a new line above the line where the cursor is.

* :wq - write the updated file over the old one, and quit the editor.

* :q! - quit, but don't save any of the changes.

Figure 14. Summary of UNIX vi Commands

84

.q . *f. . .,+ ,- ,

quWV WI Wv-U W U * W W' W 'UWW W -VWW -1U WN .I WV

ABCDE.
A->B.
C->E.
B->->C.
A->E.
D -> - >-A.

Figure 15. Input File Example 1

DATABASE DEPENDENCIES:

The list of attributes must be followed by at least one dependency. The file may contain any

number of functional dependencies or multivalued dependencies. The dependencies must comply

with the following specifications.

" The symbol to show functional dependence is - > (i.e., dash, greater than). The symbol

must contain only one dash and one greater than.

" The symbol to show multivalued dependence is - > - >.

e Each dependency must have one or more legal attributes on the LHS and RHS, and must be

followed by a period.

" The list of dependencies may contain embedded carriage returns and spaces.

* Multivalued dependencies may include the symbol "I" to separate groups of dependencies

when appropriate on the RHS only.

" If all attributes in the attribute list contain only one symbol, then the attributes on the LHS

and RHS do not need to be separated by spaces. However, if some of the attributes contain

more than one legal character, each attribute must be separated by spaces or carriage returns.

85

NAME SSN ACCTNUM BALANCE.
SSN - > NAME.
SSN - > - > ACCTNUM BALANCE.
ACCTNUM - > BALANCE.

Figure 16. Input File Example 2

A.6.2.1 Create a new file. This function allows the user to create new files in the

format defined in Section A.6.2. The function first asks the user for a file name for the new file.

Then, the file is created and the user can enter data using UNIX vi commands (see Figure 14 for a

summary of basic commands). The toolbox calls the UNIX vi editor to provide the edit capability,

and therefore, all vi commands are available.

When the user has finished creating the new file, Le should end the editing session with the vi

command ":wq" to save the information. If the user types the vi command ":q!" at the end of the

session, the data will not be saved. After the user is done editing a file, the toolbox will examine

the file to ensure it is in the proper format. If it is, the system will return to the "Create or Update

Database Specification File" menu. If the file is not in the proper format, the toolbox will display

the file contents and, in most cases, tell the user which line contains an error and what the error is.

The system will then inform the user that he may edit the file and try again, and will return the

user to the 'Create or Update Database Specification" menu and the user can either create/edit

additional files, exit the toolbox, or return to the main menu so he can use other toolbox functions.

A.6.2.2 Update an ezisting file (save with same name). This function allows the user

to update an existing file, and save the contents under the same file name. The function first asks

for the name of the file to be updated. The system will check to make sure the file exists, and if so,

will display the file and allow the user to edit it using the full screen editor. If the file does not exist,

the system will notify the user and allow him to try again. The toolbox will examine the file to

ensure it is in the proper format as described above for the "Create New File" function. Once the

user finishes editing the file, the toolbox returns to the "Create or Update Database Specification

86

IL

File" menu and the user can either create/edit additional files, exit the toolbox, or return to the

main menu so he can use other toolbox functions.

Note: If during the editing session the user decides he wants to save the updated file under a new

file name, he may end the editing session with the vi command "wq newfilename". This will store

the updated information in a file named "newfilename", and leave the original file untouched.

A.6.2.3 Update an ezisting file (save with a different name). This function allows the

user to update an existing file, and save the updated information under a new file name. The

function first asks the user for the name of the file to be updated. Then, if the first file exists, the

function asks for the new file name. The system then makes a copy of the original file and stores it

in a file with the new name. Then the system displays the copy so the user can edit it. When the

user terminates the editing session, the updated information will be stored in a file with the new

file name. After editing is complete, the toolbox will examine the file to ensure it is in the proper

format as described above for the "Create New File" function. Once the new file is completed by

the user, the toolbox returns to the "Create or Update Database Specification File" menu and the

user can either create/edit additional files, exit the toolbox, or return to the main menu so he can

use other toolbox functions.

A.6.3 Generate Logical Structures. This function allows the user to generate logical database

designs in 3NF, 4NF, or BCNF. As soon as the "Generate Logical Structures" option is chosen on

the main menu, the toolbox will ask the user to input the name of an input file. The user must

provide the name of an input file which contains database specifications in the format described in

Section A.6.2. The system will then examine the file to ensure it is in the proper format. If the

specified file is not in the proper format, the system will display the errors and then display the

user's options. Once the name of a properly formatted input file is given, the toolbox shows the

options on the "Generate Logical Structures" menu. The function of each of the options on this

menu are described in the following subsections. The 4NF and BCNF designs are accomplished by

87

a single algorithm which was originally developed in [17]. The algorithm has been adapted for use

in the toolbox.

A.6.3.1 Generate SNF Designs. The "Generate 3NF Designs" option generates 3NF

database schemes from the universal attributes and FDs in the specified input file. Third Normal

Fc,,--) (3NF) is a normal form in which each relation of a database conforms to the following

restrictions. First of all, each relation cannot contain nonkey attributes which are :'unctionally

dependent on part of the primary key for the relation. In other words, each nonkey attribute of

each relation must be fully dependent on the primary key. (This requirement causes the relations

to be in 2NF). Additionally, no relation can contain a nonkey attribute which is dependent on

another nonkey attribute. This last requirement ensures that no nonkey attribute is transitively

dependent on the primary key.

If the input file contains any MVDs, they are ignored by this function since they are not

considered in 3NF designs. This function displays a menu with the following options:

1. Generate a single 3NF scheme.

2. Generate alternative schemes.

3. Return to Generate Logical Structures menu.

4. Change Input File Name.

5. Exit System.

If option number 1, Generate a single 3NF scheme, is chosen, the system will display the

universal attributes, FDs, and MVDs in the current input file. If the file does not contain any FDs,

the program will notify the user that the universal set of attributes is by default in 3NF. If the

file contains FDs, the toolbox generates the 3NF schemes, and stores the'm in a file which has the

extension ". 13NF" (i. e. , single 3NF) added to the name of the current input file name. After

88

UW~MWWV UWLw wwv WEIW WWWWWW 11W 11 UII1F F VWVw iW rwIM - %1V- - W, W-

displaying the schemes on the terminal, the toolbox tells the user the name of the output file where

the schemes are stored, and then returns to the "Generate 3NF Designs" menu.

If option number 2, Generate alternative schemes, is chosen, the system will display the

universal attributes, FDs and MVDs as done in option 1. Again, if the filc does not contain any

FDs, the toolbox will notify the user that the universal set of attributes is by default in 3NF.

If the file contains FDs, the toolbox will display an enumerated list of the FDs, and let the

user know that the displayed order is the default order which will be used to generate the 3NF

design. The system then asks the user if he would like to change the order of the FDs, and if so, to

type the number of the FDs in the desired new order. The user can generate different 3NF schemes

by varying the order of the FDs since the order effects which FDs are eliminated from the set by

the 3NF algorithm.

The system will allow the user to vary the order of the FDs as many times as desired, and all

designs will be stored in a file which has the extension ". alt.3NF" (i. e. ,alternative 3NF) added to

the name of the current input file name. After displaying the schemes on the terminal, the toolbox

tells the user the name of the output file where the schemes are stored, and then returns to the

"Generate 3NF Designs" menu.

A.6.3.t Generate BCNF Designs. The "Generate BCNF Designs" option generates

BCNF database schemes from the universal attributes and FDs in the specified input file. Boyce/Codd

Normal Form (BCNF) is a stronger normal form than 3NF. BCNF has the same restrictions as

named above for 3NF, however, BCNF also requires that the LHS of each nontrivial functional

dependency be a superkey of the relation it applies to. A superkey is a set of attributes which

uniquely identifies each entity (tuple) of a relation. That is, a superkey functionally determines all

attributes in the relation.

89

If the input file contains any MVDs, they are ignored by this function since they are not

considered in BCNF designs. This function displays a menu with the following options:

1. Generate BCNF schemes.

2. Return to Generate Logical Structures menu.

3. Change Input File Name.

4. Exit System.

The following definitions from [17] are necessary for understanding the output of this function.

* Envelope set: set of MVDs which is logically implied by a set of FDs and MVDs.

* Minimum cover of a set of MVDs: a reduced set of MVDs which is equivalent to the original

set, but with no redundancies.

* Dependency Basis of a set of attributes: the dependency basis of a set of attributes X is the

set of sets of attributes logically implied by X with respect to a given set of FDs and MVDs.

* M-: if D is a set of FDs and/or MVDs, and M is the minimum cover of the envelope set of

D, then M- is the set of MVDs given by {X - WIX -.-. W is a reduced MVD in M + }.

* keys: LHS(M-)

* sp-ordering: a sequence of elements X 1 ,X 2 , X1 is a sp-ordering if:

(1) Xi C X implies I < i < j < n, and
(2) if D logically implies X -. Xj but D does not

logically imply X1 - Xj,
then 1 <i <j < n.

If option number 1, Generate BCNF schemes, is chosen, the system will display the universal

attributes, FDs, and MVDs in the current input file. If the file does not contain any FDs, the

program will notify the user that the universal set of attributes is by default in BCNF. If the file

90

- fS ., -N..'W*-
5

.'
5

b U

I , contains FDs, the toolbox will display an enumerated list of the keys for this set of dependencies,

and let the user know that the displayed order is the default order which will be used to generate

the BCNF design. The system then asks the user if he would like to change the order of the keys,

and if so, to type the number of the keys in the desired new order. The user can generate different

BCNF schemes by varying the order of the keys since the order effects which FDs are eliminated

from the set by the BCNF algorithm.

In addition to the keys and list of BCNF schemes, this function also displays some of the

intermediate results of the BCNF algorithm. The system displays the envelope set, minimum cover,

dependency basis, and M-.

The system will allow the user to vary the order of the keys as many times as desired, and all

designs will be stored in a file which has the extension ". BCNF" added to the name of the current

.* input file name. After displaying the schemes on the terminal, the toolbox tells the user the name

of the output file where the schemes are stored, and then returns to the "Generate BCNF Designs"

menu.

The other options on the "Generate BCNF Designs" menu are self explanatory.

A.6.3.3 Generate 4NF Designs. Fourth Normal Form (4NF) is a normal form which

is defined exactly like BCNF except that instead of functional dependencies, the 4NF definition

uses multivalued dependencies. That is, the LHS of each nontrivial multivalued dependency must

be a superkey of the relation it applies to.

The "Generate 4NF Designs" function operates the same as the "Generate BCNF Designs"

function described above. The only differences in the functions is that the output is stored in a

file which has the extension ". 4NF" added to the name of the current input file name. Also, this

function will work without FDs in the input file since the 4NF design algorithm can use FDs or

MVDs separately to design schemes, or it can integrate both FDs and MVDs to design the schemes.

If the file contains only FDs, this function will generate the same schemes as the BCNF function.

91

'AI

A.6.4 Accomplish Utility Functions. This activity provides many functions which the user

can use to study dependency theory and relational database design. The user can select this func-

tion from the main menu. Prior to executing any of the functions, the user must provide the name

of an input file which contains database specifications in the format described in Section A.6.2.

After the name of the input file is provided, the toolbox will examine the file to determine if it is in

the proper format. If not, the system will notify the user of the errors. If the file is in the proper

format, the toolbox will display the following menu:

1. Find minimal covers for a set of FDe.

2. Find minimal covers for set of FDs and MVDs.

3. Membership algorithm.

4. Find envelope set for set of FDs and MVDs.

5. Compute attribute closure.

". 6. Find dependency basis of set of attributes.

7. Generate instance of an armstrong relation.

8. Return to Main Menu.

9. Change Input File Name.

10. Exit System.

aD The algorithms used to implement functions 2, 4, and 6 were originally defined in [17], and

were adapted for use in the toolbox. The operation of each function is described in the subsections

below,

A.6.4.1 FD Minimal Cover. A minimal cover of a set of FDs is a reduced set of FDs

which is equivalent to the original set, but with no redundancies. The concept of minimal cover

92

..
5. . . % . % . o , .- - - - - - . .. • , - .*.. . - . . % ,

' "a,
,

'. " , - J ."". -, "P."" , ," w ,, , - ."*.. . . - " W , " .. € " 4 "
-
oP . r

'P
'" mm m" w , ,

is central to normalization. Minimal covers are important because the cover contains all the same

"potential" information as the original set; however, since the redundancies have been removed,

the relatione generated from a minimal cover should contain less redundancy.

This function first shows the following menu:

1. Generate minimal cover.

2. Return to Utility Function menu.

3. Change Input file Name.

4. Exit System.

If option number 1, Generate minimal cover, is chosen, the system will display the FDs in

the current input file. Then, the minimal cover is displayed on the terminal until the user presses

CO return. When the user presses return, the toolbox returns to the "FD Minimal Cover menu". The

other options are self explanatory.

93

A.6.4.-2 Combined FD/MVD Minimal Cover. As described above for FDs, the mini-

mal cover of a set of MVDs is a reduced set of MVDs which is equivalent to the original set, but

with no redundancies. This function operates the same as the FD minimal cover function except

that it combines the FDs and the MVDs given in the input file into an equivalent set of MVDs,

and then generates the minimal cover of the set of MVDs.

A.6.4.3 Membership Algorithm. Given an input file which contains a set of universal

attributes and a set of FDs, this function will tell the user whether or not a specified FD is in the

closure of the set of FDs. The input file must contain FDs for this function.

First, the function will display the FDs that are in the input file. Then, the toolbox will ask

the user to input an FD. The user must input the FD in the same format as the FDs shown in the

sample input files in Section A.6.2. That is, the FD must appear as follows and be followed by a

period:

. A->B.

The toolbox will verify the format of the FD. If the FD is not in the proper format, the user

is notified and asked if he wants to try again. If he does not want to try again, the toolbox returns

to the FD Minimal Cover menu.

Once the user inputs a properly formatted FD, the toolbox determines if the FD is the closure

of the set of FDs in the input file and then notifies the user of the results. The toolbox allows the

user to try as many FDs with the current input file as desired, and then returns to the FD Minimal

Cover menu.

94

• . , _q4_

0 IV,,A.6.4.4 Envelope Set for set of FDs/MVDs. An envelope set is the set of MVDs which

is logicaly implied by a set of FDs and MVDs. The generated envelope set of MVDs can be used

to decompose relations in the context of both FDs and MVDs.

This function will generate the envelope set of MVDs for a set of FDs and MVDs in a given

input file. First, it displays the FDs and MVDs in the input file. Then, it displays the envelope

set, and subsequently returns to the Utility Function menu.

A.6.4.5 Attribute closure. The closure of an attribute X with respect to a set of FDs

is the set of all attributes functionally determined by X. This function computes the closure of one

or more attributes and then displays the closure on the terminal.

First, the function displays the universal attributes, FDs and MVDs which are in the input

file. Then, the function asks the user to input one or more attributes. Then finally, the function

computes the closure of the attributes and displays the closure on the terminal.

The function allows the user to try as many sets of attributes with the current FDs as desired,

and then returns to the Utility Function menu.

A.6.-4.6 Dependency Basis. The dependency basis of an attribute is a set of sets of

attributes which can be used to find the set of MVDs of the form X ---. Y logically implied by

M. Given an input file which contains a set of universal attributes and a set of FDs and/or MVDs,

this function will generate the dependency basis of a specified set of attributes.

This function follows the same format as the Attribute Closure function described above.

95

' k~

A.6.4.7 Instance of Armstrong Relation. Given an input file which contains a set

of universal attributes and a set of FDs and MVDs, this function will generate an instance of an

Armstrong relation. An Armstrong relation is a relation which satisfies precisely those dependencies

in the input set, and no other 'accidental' dependencies.

the function has started, generates the instance of the Armstrong relation, and displays it on the

terminal. The output is stored in a file which has the extension ". arm" preceded by the input file

name. After the user has reviewed the output on the terminal, the toolbox returns to the Utility

Function menu.

96

Appendix B. SADT Diagrams

B.1 Introduction

This Appendix contains the SADT diagrams which define and document the functional re-

quirements for the Dependency Theory Toolbox. In the following pages of this appendix, each

diagram is presented, and then the pages of text which immediately follow each diagram provide

more information about the requirements conveyed in the diagram. The diagrams explain "what"

the requirements are, and the pages of text which correspond to each diagram explain the require-

ments in more detail and explain "why" some of the requirements exist.

'I9

97

- - t .rl r 1 r 1 r w , x " L mx 1R 7 ,

AUTHOR: Capt Stansberry DATE: 18Dec87

PROJECT: Dependency Theory Toolbox REV: 1.0

COMMANDS

DATABASE

CONSTRAINTS CRT INFO

ASSIST
DATABASE
ATTRIBUTES DATABASE

DESIGNER USER FILES

USER FILES

NODE: TITLE: NUMBER:
A-0 Assist Database Designer C-I

98

B.f A-O-. Assist Database Designer

The activity, Assist Database Designer, encompasses the top level functional requirements for

the Dependency Theory Toolbox. In general, the function of the toolbox is to assist the user with

designing and studying the logical structures of relational databases. The activity allows the user to

input DATABASE CONSTRAINTS (functional dependencies and multivalued dependencies) and

DATABASE ATTRIBUTES interactively, or to specify existing USER FILES which contain the

information. The user file can be created using the toolbox, or can be generated by other design

tools in the prescribed format. The system is designed to accept existing files so that this toolbox

can be used in conjunction with other database design tools developed at AFIT. For example, if

the Entity-Relationship diagramming tool, which was developed by Mendez [22], stored the entities

and attributes which were specified in the diagram in the proper format, the data file could be

co directly input into the toolbox.

The activity is controlled by COMMANDS which come from the user's terminal. The system

communicates with the user by outputting CRT INFO on the user terminal and outputting other

information into USER FILES which are stored on a system mass storage device.

I',.

99

-
%

AUTHOR: Capt Stansberry DATE: 18Dec87#

PROJECT: Dependency Theory Toolbox REV: 1.0

COMMANDS

IiCREATE ORFIE
12UPAE 20
13

~- ATAASEATTIBU E EAT

- FUNCTIONICAL

NODE: TITE:UNUMBES
AO Asis Datbas Desgne C3

A.LN100

ACCOMPLIS

B.3 AO Assist Database Designer

ABSTRACT: The activity, Assist Database Designer, provides the user with functions to

help design and study the logical structures of relational databases. The activity is controlled by

COMMANDS which come from the user's terminal. The system communicates with the user by

outputting CRT INFO on the user terminal and outputting other data into USER FILES which

are stored on a system mass storage device. The activity allows the user to input DATABASE

CONSTRAINTS (functional dependencies and multivalued dependencies) and DATABASE AT-

TRIBUTES interactively, or to specify existing USER FILES which contain the information.

Al - INITIALIZE TOOLBOX: This activity is automatically activated when the toolbox is

started. The activity identifies the system and welcomes the user, and then provides the user with

a menu of options. Once the user selects an option through COMMANDS from the user terminal,

the activity calls the appropriate system function. This activity communicates with the user by

outputting CRT INFO on the user terminal.

A2 - CREATE OR UPDATE DATABASE SPECIFICATION FILE: This activity interacts with

the user to collect the DATABASE ATTRIBUTES and DATABASE CONSTRAINTS (FDs and

MVDs), or gets the name of a previously defined file. The activity stores the database specifications

in a properly formatted user file, or updates the previously defined file. The "properly formatted"

user file is requircd mainly to provide a standard file which can be used to pass database specifi-

cations between this toolbox and other AFIT tools (e.g., the ER diagramming tool [22]), and as a

place to store database specifications until needed by the system. The database specifications are

stored in a user file on mass storage, and are available for input into the other activities shown on

the AO diagram as required.

A3 - GENERATE LOGICAL STRUCTURES: This activity generates the logical structures for

101

51, '

a relational database by manipulating database attributes and constraints which are stored in a

specified USER FILE. The USER FILE must be a file which contains database specifications in

the standard format. Then, the selected option within this activity will call a routine to build the

required data structures for the normalization process.

This activity can generate logical structures in 3NF or BCNF if the database constraints

include functional dependencies (FDs), and 4NF if the constraints include a combination of both

FDs and MVDs, or only multivalued dependencies (MVDs) The activity can either generate

alternative logical structures, or generate a single design, depending on the user's preference. The

activity communicates with the user by outputting CRT INFO on the user terminal, and stores

database designs in USER FILES stored on mass storage. To accomplish the design tasks, the

activity must call utility functions and pass these functions the appropriate database constrai,,ts

and attributes. Then, the functions return the results to this activity for further processing.

A4 - ACCOMPLISH UTILITY FUNCTIONS: This activity provides many functions which can

be accessed directly by the user or by the A3 activity. The user can select this activity from

the main menu provided by the Al activity, and then control it with COMMANDS input from

the user terminal. The user must specify a USER FILE which contains database specifications

in the standard format so the functions can build the appropriate data structures needed for the

operations. Additionally, the A3 activity must call many of the functions provided by this activity

in order to design logical structures. Once completed, the function returns the results to activity

A3 for further processing.

A5 - EXIT TOOLBOX: This activity notifies the user of program termination and passes control

back to the operating system.

102

5%

s t5 -

p

B.4 A] - INITIALIZE TOOLBOX

ABSTRACT: This activity is automatically activated when the toolbox is started. The

activity identifies the system and welcomes the user, and then provides the user with a menu of

options. Once the user selects an option through COMMANDS from the user terminal, the activity

calls the appropriate system function. This activity communicates with the user by outputting CRT

INFO on the user terminal.

AI. - WELCOME USER: This activity generates a display to identify the toolbox and

welcome the user. The initial display will remain on the screen until the user types a key to

continue. After the user presses a key on the user terminal, this activity calls the PRESENT

OPTIONS activity.

(A.LS AI.2 - PRESENT OPTIONS: This activity will display a menu of the options the user can

choose. The menu will contain the four main activities shown on the AO diagram. The options will

include the following:

1. Create or Update Database Specification File

2. Generate Logical Structures

3. Accomplish Utility Functions

4. Exit Toolbox

Once the user chooses an option, this activity will call the appropriate function.

* f104

LA

AUTHOR: Capt Stansberrv DATE: 18Dec87

PROJECT: Dependency Theory Toolbox REV: 1.0

C

COMMANDS

DATABASE
CONSTRAINTS CRT INFO

II CREATE NEW FILE 01

DATABASE OR
2 ATTRIBUTES UPDATE OLD FILE USER FILES

02
USER FILES al0

13

"A.

NODE: TITLE: Create or Update NUMBER:

A2 Database Specification File C-4

105

B.5 At - Create or Update Database Specification File

ABSTRACT: This activity interacts with the user to collect the DATABASE ATTRIBUTES

and DATABASE CONSTRAINTS (FDs and MVDs), or gets the name of a previously defined file.

The activity stores the database specifications in a properly formatted user file, or updates the

previously defined file. The database specifications are stored in user files on mass storage, and are

available for input into the other activities shown on the AO diagram as required.

A2.1 - CREATE NEW FILE OR UPDATE OLD FILE: This activity is responsible for inter-

acting with the user to collect the database specifications. The user will be expected to input the

DATABASE ATTRIBUTES, and the FDs and MVDs (DATABASE CONSTRAINTS) required to

hold over the given set of attributes in a specific format. Alternatively, the user may provide the

name of a previously defined USER FILE which contains the information, or which contains part

of the information and therefore needs to be updated. This activity then stores the properly for-

matted DATABASE SPECIFICATIONS into USER FILES. The USER FILES are stored on mass

storage so they are available for other system functions. The user is informed of current activities

by CRT INFO output to the user terminal.

106

L-I7w ~m w1.~nA.. Wj I- A.,"WI WPWW W~v~v~v 1jvW.,v.'-. 4v . lvwirrl- J

-AUTHOR: Capt Stansberrv DATE: 18Dec87

-PROJECT: Dependency Theory Toolbox REV: 1.0

COMMANDS

USER PROVIDE USER FILES 0

FILES INTERFACE TO 0

NORMALIZATION

FUNCTION RESULTS GENERATE 7

4N2 0N
DDESIGNS

20

30

* - CNSTRANTS adGATTIBUTE

NODE: TITLE: N UMIB ER:

107

B.6 AS- GENERATE LOGICAL STRUCTURES

ABSTRACT: This activity generates the logical structures for a relational database by ma-

nipulating database attributes and constraints which are provided in a specified USER FILE. The

USER FILE must be a file which contains database specifications in the standard format. This ac-

tivity can generate logical structures in 3NF or BCNF if the database constraints include functional

dependencies (FDs), and 4NF if the constraints include only multivalued dependencies (MVDs) or a

combination of both FDs and MVDs. The activity can either generate alternative logical structures.

or generate a single design, depending on the user's preference. The activity communicates with the

user by outputting CRT INFO on the user terminal, and stores database designs in USER FILES

stored on mass storage. To accomplish the design tasks, the activity must call utility functions

and pass these functions the appropriate database constraints and attributes. Then, the functions

return the results to this activity for further processing.

A3.1 - PROVIDE USER INTERFACE TO NORMALIZATION FUNCTIONS: This activity

displays the available options and obtains the name of the USER FILE which contains the database

specifications in the standard format. The available options will include:

1. GENERATE 3NF DESIGNS

2. GENERATE BCNF DESIGNS

3. GENERATE 4NF DESIGNS

Once an option is selected, this activity calls the appropriate program function.

A3.2 - GENERATE 3NF DESIGNS: This activity generates logical structures in 3NF. The activity

can either generate alternative logical structures, or generate a single design, depending on the

user's preference. To accomplish normalization, this activity will use the database attributes and

108
€,

, :, FDs only from the database constraints provided in the USER FILE. That is, MVDs will not be

used by the 3NF design algorithm to generate logical structures. The activity will store the logical

structures in USER FILES, and will display them on the user terminal. Additionally, to accomplish

the normalization process, this activity will call certain functions in the A4 activity and pass them

the pertinent CONSTRAINTS AND ATTRIBUTES required by the functions. Then, this activity

will use the UTILITY FUNCTION RESULTS to complete the normalization process.

A3.3 - GENERATE BCNF DESIGNS: This activity generates logical structures in BCNF. The

functional requirements and capabilities described above for activity A3.2 also apply to this activ-

A3.4 - GENERATE 4NF DESIGNS: This activity generates logical structures in 4NF. To accom-

plish normalization, this activity will use the database attributes, and will use MVDs only from

the database constraints provided in the database specifications in the USER FILE, or can use

FDs and MVDs together, depending on the content of the USER FILE. Other than this difference.

the functional requirements and capabilities described above for activity A3.2 also apply to this

activity.

1109

AUTHOR: Capt Stansberrv DATE: 18Dec87

PROJECT: Dependency Theory Toolbox REV: 1.0

NC3 C1 FUNCTION CALLS

USER]USER FILES

FILES PROVIDE 01

USER INTERFACE ATQ _... TO UTILITIES 1 -------T.. _

FIND MINIMAL UTILITY

COVERS FOR SET FUNCTION
I1 (

t O F F s

-T "O

Q-" MIN COVER . @ ' ATTRIBUTE

FOR FDs/MVDs CLOSURE

o 0

MEM1BERSHIP@ -DPNEC
AEGR HMBASIS

@__ ALGORITHM @ ---

--- ENVELOPE O " ARMSTRONG

(. SET
RELATION

* - CONSTRAINTS and ATTRIBUTES

NODE: TITLE: NUMBER:
A4 Accomplish Utility Functions C-6

5110

; ,, ,,', '.- ¢.'?£.N. . .. <..4:.; ?% ?... . :.....: :.. ;: ; .;.; : ' .;.?;%.

B.7 A4 - ACCOMPLISH UTILITY FUNCTIONS

ABSTRACT: This activity provides many functions which can be accessed directly by the

user or by the GENERATE LOGICAL STRUCTURES (A3) activity. The user can select this

activity from the main menu provided by the INITIALIZE TOOLBOX (A l) activity, and then can

control it with COMMANDS input from the user terminal. The user must specify a USER FILE

which contains database specifications in the standard format. Then, the selected function will call

a routine to build any unique data structures required for the particular operations, Additionally,

the A3 activity must call many of the functions provided by this activity in order to design logical

structures. Once completed, the function returns the results to activity A3 for further processing.

A4.1 - PROVIDE USER INTERFACE TO UTILITIES: This activity is activated if the user

chooses to access the utility functions directly. The activity displays the available functions and

obtains the name of the USER FILE which contains the database specifications in the standard

format. The available functions will include:

1. Find minimal covers for a set of functional dependencies (FDs)

2. Find minimal covers for a set of FDs and multivalued dependencies (MVDs)

3. Membership algorithm (i.e., determine if an FD is in the closure of a set of FDs)

4. Find envelope set for a set of FDs and MVDs

5. Compute attribute closure

6. Find dependency basis of a set of attributes

7. Generate instance of an Armstrong relation

Once an option is selected, this activity calls the appropriate program function, and passes the

CONSTRAINTS AND ATTRIBUTES.

X:1

A4.2 - A4.12: Each utility function requires that the database CONSTRAINTS AND AT-

TRIBUTES be provided as input. If the function has been called by activity A4.1, then the

UTILITY FUNCTION RESULTS are passed back to that activity so they can be presented to the

user. If the function has been called by one of the normalization functions in activity A3, then the

results are passed back for further processing. The functions are controlled by function calls from

either the user interface of activity A4.1 or the normalization tools in activity A3.

112

% %%

.5%

AUTHOR: Capt Stansberry DATE: 18Dec87

PROJECT: Dependency Theory Toolbox REV: 1.0

C1

USER

OPTION

NOTIFY USER
OF TERMINATION CRT INFO

AND EXIT 01

TO OPERATING

SYSTEM

NODE: TITLE: NUMBER:

A5 EXIT TOOLBOX C-7

113

-.,.,1 ', 4':'::: .; , :- : ::::: ::: ,, - : :4 4' :;:: :'. . '',:':,':':,,' : ,:4'-:.,. '.€ 7, .. e "€ t. e "" ,,v e e. , ., . ",X ,

%XT~nXW1% MW K'9v %KV -Wvi wil NZ iip "W' 1I'Y7'"'7 -,-V'WV WW'

B.8 A5 o EXIT TOOLBOX

ABSTRACT: This activity notifies the user of program termination and exits to the operating

system.

A5.1 - CLOSE FILES: This activity will check to see if any files are currently open, and if so

will close them.

A5.2 - NOTIFY USER OF TERMINATION AND EXIT TO THE OPERATING SYSTEM:

This activity notifies the user that the program has terminated and returns control to the operating

system.

114

I'- , : .'. ,. -..

Appendix C. Structure Charts

The following structure charts show the top-level modules of the toolbox and how they are

interrelatd. The charts were developed based on the SADT diagrams that were defined during the

Requirements Analysis phase of the toolbox development.

The chart in Figure 17 shows the modules which are called by the main program driver. Then,

the structure charts in Figures 18-28 show the modules that are called at the next lower level, and

the information which is passed between them.

1 115

.-

., main

create- generate-logical_ utility- infile_ exit
file -structures functions parse

Figure 17. main structure chart

.16

A11

lr~vTW -%9 wT .r i , d-,K "~WWI

create-file

crat-upae-udae

ne - ielfie

Figure 18. create-file structure chart

*117

S.A

m generatelogi calstruc tures

menu.choice

Third.NF i doBCNF_4NF

mlle ,,F..fl ag

3,NF..desijgn -designs parse designs

ptr

three-NF° yyparse BCN F_4NF

algorithm driver

Figure 19. generate-logical structures structure chart

118

fd.xnin- fdjnvd- membership envelope

interface interface

attri- dep-basis armstrong- infile.

closure relpas

Figure 20. utility-functions structure chart

'S 119

__L WU7M W Mr MINS_ ~ ~gW -,-W Mrmr .~V~." ' ~~.v- ~~.~ .. ~ Rn MI.pip LrV VwT VT,'W 'JU W W W R vww- V k - V j

fd ni n -cover.i n te rface

fsnl-f-at-min infile-parse

covercover

min cover
ptr

fd-cover yyparse

Figure 21. fc-min-cover-interface structure chart

120

fd-mvd-nin.cover-inter face

fd-mvd-cover ifl-as

eiivmi
set coe
ptr \t

fdense

ptr i n dIt
cover vpt

Ipr

fdnin-cover envelope mlcover yas

Figure 22. fd..nvd-.min.coverinterface structure chart

121

fdid d TRUE/
lis f list FALSE

ptr ptrI ptr FLAG

asign fd ids build - mem bership -

membership- algorithm
alg-ds

Figure 23. membership structure chart

envelope-set

fd ptr

env set ptr mvd ptr
univ attr ptr

envelope

Figure 21. envelope-set structure chart

122

%

.5A

A 1 .

' udl

attri-closure

. structs

" assign-fd-ids

'2',build- membership-

membership- algorithmn

alg-ds

Figure 25. attri-closure structure chart

.

•5 5, ;12

dep-basisI

-attributes
-min cover ptr

-univ attrs

basis
ptr

-fd ptr

-mvd ptr////

pt -env setpttr / mptr
cover -attr ptr

ptr

envelope mincover dep

Figure 26. dep.basis structure chart

armstrong-rel

armrel-alg

4.. Figure 27. armstrongrel structure chart

1.
124

U,

infile-parse

yyparse

Figure 28. infile-parse structure chart

NI

125

- N A >y~

Appendix D. Test Procedures and Input/Output Examples

This Appendix contains the test procedures needed to test the accuracy of all toolbox func-

tions. Each procedure specifies the required input and expected output for each test.

The input files which were used in the majority of the test procedures are presented below so

they can be easily referenced in each test procedure. The only additional test files were required to

test the Armstrong relation function, and therefore, they are presented in the Armstrong relation

test procedure described below in Section D.11.

Input Files:

testfilel:

i ADCDEF.

A -> DF

AC ->-> B

DE ->F.

testfile2:

~ABCD .

AB ->D.

B -> C.

C -> D

testfile3:

IBCDEFGH

A B -> C

C -> D

126

SI

D -> E

DE -> FG

FG -> H

testfile4:

EMPNUM SSW NAME SALARY

SSI -> NAME SALARY EMPIUM

EMPNUM -> NAME SSN SALARY

testfileS:

boy girl bsl gal date dance

bal ->-> boy

gel ->-> girl

A boy girl ->-> date

boy girl ->-> dance

testfile6:

A B C D E.

A ->-> E.

B C ->-> D

B ->-> E

testflle7:

ABCD

A -> I

B -> A

C -> D

127

L%

D.1 Generate a sgle 3NF scheme

D.1.1 Test Case 1. Input: testfile2

Expected Output:

Single 31F Design Output:

Minimal Cover:

B -> C

C -> D

31F Schemes:

1. Key = B

Scheme = BC

2. Key = C

Scheme = CD

3. Key = AB

Scheme = AB

D.1.2 Test Ca e 2. Input: teetfile3

Expected Output:

*ee***e****e**********************e****

Single 31F Design Output:

minimal Cover:

C -> D

D -I

D -> F

128

V.%*

D ->G

AB -> C

FG ->I

31F Schemes:

1. Key = C

Scheme = CD

2. Key = D

Scheme = DEFG

3. Key = AB

Scheme = ABC

4. Key a FG

Scheme = FGH

* D.1.3 Test Case 3. Input: testfile4

Expected Output:

Single 31F Design Output:

Minimal Cover:

EMPIUM -> SSI

'S. SSW -> EMPIUN

SSI -> NAME

1SS -> SALARY

31F Schemes:

1. Key a EMP IUN

Scheme = EMPIUM SSi

129

2. Key.- SSI

Scheme a ENPUItN SS NAME SALARY

D..4 Test Case 4. Input: testfile5

Expected Output:

The system should display the following message:

The input file does not contain any FDs, therefore, the universal set of attributes is by
default in BCNF.

D.2 Generate alternative SNF schemes

This function uses the same 3NF algorithm as tested above in the procedure for single 3NF

designs, therefore, the output of the algorithm is already covered. Thus, the objective of this

test procedure is simply to ensure the order of the FDs can be varied by the user. Therefore.

several order changes were tried to verify that the function accurately changed the orders, and then

produced the correct schemes.

D.3 Generate BCNF schemes

D.3.1 Test Case 1. Input: testfile2

Expected Output:

Single BCIF Design Output:

Envelope:

B ->-> A

C ->-> AB

Minimum Cover:

130

B ->-> A

C ->-> AB

Dependency Basis:

B->-> Al CD

C->-> D I AB

N-:

B A->-> AICD

C->-> D I AB

KEY@ (up-ordering)

%' {C,}

Schemes:

1. Key = C

Scheme =CD

.O 2. Key = B

Scheme = BA

3. Key = B

Scheme BC

D.3.2 Test Case 2. Input: testfilel

Expected Output:

A5,

Single BCNF Design Output:

Envelope:

A S)> CE

4..4 AC->-> B I E

DE ->-> ABC

131

% .

F" VU~ IM VUK-W" -K rVK 7 j -jq NA'v. .'. '~A P -V lwTVX VT. Vw VW V' w Vv VV. W" V I UV1

Minimum Cover:

A ->-> BCE

AC ->-> E

DE ->-> ABC

Dependency Basis:

A->-> DF I BCE

AC->-> B E I DF

DE->-> F I ABC

N-:

A->-> DF I BCE

AC->-> B I E

DE F I ABC

KEYs (sp-ordering)

fAACDE}

Schemes:

1. Key = A

Scheme a ADF

2. Key = AC

Scheme = ACB

3. Key = AC

Scheme = ACE

D.3.3 Test Case 3. Input: testfile7

Expected Output:

Single BCIF Design Output:

132

V_ - t ' d .-' f * ' • . *

& Envelops:

A ->>CD

B->-CD

C ->)AB

Minimum Cover:

A -)>CD

C ->>AB

Dependency Basis:

A -)>B ICD

B ->>A ICD

(;. A -)>B ICD

B ->Al CD

KEY. (sp-ordering)

(A ,B.C)

Schemes:

1. Key = A

Scheme = A

2. Key -C

Scheme =CD

3. Key aC

Scheme *CA

133

1AM

D.3.4 Test Case 4. Input: testfile6

Expected Output:

The system should display the following message:

The input file does not contain any FDs, therefore, the universal set of attributes is by
default in BCNF.

D.4 Generate 4NF schemes

D.4.1 Test Case 1. Input: testfile2

Expected Output:

Single 4 Design Output:

Envelope:

B ->-> A

C ->-> AB

Minimum Cover:

B ->-> A

C ->-> AB

Dependency Basis:

B->-> A I CD

C--> D IB

N-:

B->-> A I CD

C->-> D I AB

KEYs (sp-ordering)

{C.B}

Schemes:

134

-- '- %. -I

1. Key a C

Scheme = CD

2. Key a B

Scheme = BA

3. Key = B

Scheme = BC

D.4.2 Test Case 2. Input: testfilel

Expected Output:

Single 41F Design Output:

Envelop.:

A ->-> BCE

AC ->>B I E

DE ->-> ABC

Minimum Cover:

A ->-> BCE

AC ->>E

DE ->-> ABC

Dependency Basis:

A->-> DF I BCE

AC->-> B I E I DF

DE->-> F I ABC

M-:

A->-> DF B BCE

AC->-> B I E

135

DE ->-> F I ABC

KEY@ (up-ordering)

(A ,AC ,DE}

.4 Schemes:

1. Key a A

Scheme ADF

2. Key = AC

Scheme = ACE

3. Key = AC

Scheme = ACE

D.4.3 Test Case S. Input: testfile7

Expected Output:

Single 41F Design Output:

Envelope:

A ->>CD

B-- CD

Minimum Cover:

A ->>CD

B->-CD

C -))AB

Dependency Basis:

A ->>B ICD

B ->>A ICD

136

C -- >D I AB

M-:

A->-> B ICD

-"

4B>> A ICD

C->-> D I AB

KEYs (sp-ordering)

{A,B,C}

Schemes:

1. Key = A

Scheme = AB

2. Key = C

Scheme = CD

3. Key = C

Scheme = CA

D.4.4 Test Case 4. Input: testfile6

Expected Outfile:

Single 41F Design Output:

Envelope:

A ->>E

B ->>E

BC ->-> D

Minimum Cover:

A ->-> E

B ->-> E

137

-N.- 4"

BC ->-> D

Dependency Basis:

A->->E BCD

B ->>E IACD

BC ->>AI D I E

X-:

A ->El BCD

B ->>E IACD

BC->-A I D

4 KEYs (sp-ordering)

{AIB,BC}

Schemes:

1. Key a A

Scheme = AE

2. Key =BC

Scheme aBCA

3. Key =BC

Scheme = BCD

D.5 Find minimal covers for set of FDs

D.5.1 Test Case 1. Input: testfile2

* Expected Output:

Minimal Cover:

B - >C

138

D.5.2 Test Case 2. Input: testfile3

Expected Output:

Minimal Cover:

AB - > C

FG - > H

D.5-3 Test Case 3. Input: testfile4

Expected Output:

C Minimal Cover:
EMP-NUM - > SSN

SSIN - > EMP-.NIJM

SSN - > NAME

SSN - > SALARY

D.5-4 Test Case 4. Input: testfile5

Expected Output:

The system should display the following message:

**ERROR. the minimal cover algorithm cannot function with out functional dependen-
ci."*

139

D. 6 Find minimal covers for set of FDs and MVDs

D.6.1 Tes Case 1. Input: testfile2

Expected Output:

Minimal Cover:

B->C

C->D

D.6.2 Test Case 2. Input: testfile6

Expected Output:

Minimal Cover:

A->->E

(I B->->ED
' (":"-BC - > - > D

D.6.3 Test Case 3. Input: testfilel

Expected Output:

Minimal Cover:

A - > - > BCE

ACE - > - > E

DE->->ABC

140

1 Ao , . .
A .

.-
A., . -,.

.... o-
.•.

•P
.. A

..
.. , .I A%1 ..

D.7 Membership algorithm

Input: Specify testfile2 as the input file and then follow the following interactive procedure.

Input "B -'> D ." when the system displays the request:

Please input an FD, and the function will determine if it is in the closure of the FDs.

NOTE: the FD must be followed by a period.

Expected Output:

* The system will display the message:

The dependency is in the closure

Then the system will ask:

Would you like to try another FD with this same set of FDs (y/n)?

Type "y" and the system will ask for another FD.

Input: "AB - > C."

Expected Output:

The system will display the message:

The dependency is in the closure

When the system asks if you want to do another FD, type "y", then:

Input: "C- > B."

Output:

The system will display the message:

The dependency is not in the closure

To end the function, respond "n" when the system asks if you want to do another FD with

this set of dependencies.

141

'a

D.8 Find thec envelope set for a set of FDs and MVDs

D.8.1 Test Case 1. Input: testfile2

Expected Output:

Envelope Set:

4C - > -> AB

D.8.2 Test Case 2. Input: testfile6

Expected Output:

Envelope Set:

D.8.3 Test Case 3. Input: testfilel

Expected Output:

Envelope Set:

.A A- >- >BCE

AC - >-> B I E

DE - >- >ABC

142

% D.9 Compute attribute closure

Input: Specify testfile2 as the input file and then follow the following interactive procedure.

Input "B" When the system displays the request:

Please input one or more attributes with at least one space between each attribute:

Expected Output:

The system will display the message:

The closure is:
B - > BCD

Then the system will ask:

Would you like to try another attribute with this same set of FDs (y/n)?

Type "y" and the system will ask for another set of attributes.

Input: "A B"

Expected Output:

The system will display the message:

The closure is:
AB -> ABCD

When the system asks if you want to do another set of attributes, type "y", then:

Input: "D"

Expected Output:

The system will display the message:

The closure is:
D->D

P, To end the function, respond "n" when the system asks if you want to do another set of attributes

with this set of dependencies.

143

D.1O Find dependency basis of set of attributes

Input: Specify testfilel as the input file and then follow the following interactive procedure.

Input "AC" when the system displays the request:

Please input one or more attributes with at least one space between each attribute:

Expected Output:

The system will display the message:

Dependency Basis:
AC- > - > BJEJDF

Then the system will ask:

Would you like to try another attribute with this same set of FDs (y/n)?

Type "y" and the system will ask for another set of attributes.

Input: "A"

Expected Output:

The system will display the message:

Dependency Basis:
A- > - > DFIBCE

When the system asks if you want to do another set of attributes, type "y", then:

Input: "F"

Expected Output:

The system will display the message:

Dependency Basis:
F - > - > ABCDE

To end the function, respond "n" when the system asks if you want to do another set of attributes

with this set of dependencies.

144

D.11 Generate instance of an Armstrong relation

D.11.1 Test Case 1. Input:

AB C D

A B -> D

ExpetedOutput:

Armstrong Relation for file: teat-.input2

A BC D

--

Al BI Cl D1

Al B2 C2 D2

Al B3 C3 D1

%: Al B4 Cl Dl

A2 Bl C1 Dl

D.11.2 Test Case 2. Input:

A B C D E F.

A-C> D.

A ->> F.

A C-> D.

E->F.

E ->>A B C D.

145

Expected Output:

Armstrong Relation for file: testSM

A B C D E F

Al B1 Cl Dl El F1

Al B1 C1 Dl E2 F2

Al B1 C1 Dl E3 F1

Al B1 C2 D2 El F1

Al B1 C2 D2 E2 F2

Al B1 C2 D2 E3 F1

Al B1 C3 Dl El F1

Al B1 C3 Dl E2 F2

Al Bi C3 Dl E3 F1

Al B1 C4 D1 El F1

Al B1 C4 Dl E2 F2

Al B1 C4 D1 E3 F1

A2 BI C1 D2 El F1

A3 B2 C1 Dl El F1

A A4 B1 Cl D1 El F1

D-11.3 Test Case 3. Input:

A B C D E F G H I.

A->3.

A ->D.

A ->C.

A->E.

146

..
2 , - N

4, 1 Y

A-> F.

A ->G.

A->->H1.

B C D -> B.

B C D ->-> A F G H I.

F ->G.

F->->HI.

F->-> A B C D E.

G ->F.

G ->->HBI.I

G ->-> A B C D E.

Expected Output:

N Armtrong Relation for file: testZM

A B C D E F G H I

--

A3 BI Cl D2 E2 F1 GI HI II

A4 B1 Cl D3 El F1 GI H1 I1

A4 BI CI D3 El F1 G1 81 11

AS B1 C2 D1 E2 F1 GI HI II

AG BI C3 DI El F1 GI HI I1

' A? B2 CI Di E2 F1 GI HI I1

AS B3 C1 D1 El F1 GI H1 I1

A9 B1 C1 Di El F1 G1 H1 Il

Al 81 C1 Di El Fl GI Hi 12

A3 Bi CI D2 E2 F1 GI H1 12

147

A4 B1 Cl D3 El Fl GI Hl 12

AS 31 C2 Dl E2 Fl G1 Hi 12

a A6 D1 C3 Dl El Fl G1 Hi 12

A7 32 C1 Dl E2 Fl Gi HI 12

A8 B3 Cl D1 El F1 GI El 12

A9 Bl Cl D1 El Fl GI Hl 12

Al Bl Cl Dl El Fl G1 H2 It

A3 BI C1 D2 E2 Fl G1 H2 It

A4 31 C1 D3 El Fl G1 H2 Il

A5 Bl C2 Dl E2 Fl Gl H2 Il

AS 31 C3 D1 El F1 GI H2 Il

A7 32 Cl Dl E2 Fl G1 H2 It

AS 33 Cl DI El Fl 61 32 Il

(.A9 BI Cl Dl El Fl GI 12 It

A2 B1 Cl Dl El F2 G2 Hl 11

D.11.4 Test Case 4. Input:

ADB C D.

A->B C D.

B- A.

Expected Output:

Armstrong Relation for file: test-arm

AD3 C D

Al Bl Cl Dl

148

A2 B1 C1 D2

A3 BI C1 D3

A4 BI C1 D4

AS BI C2 Dl

A6 B2 C1 Dl

D.11.5 Test Case 5. Input:

A B C.

A B -> C.

C ->-> A.

C -> B.

Expected Output:

iArmstrong Relation for file: test-comb2

A B C

Al B1 C1

Al B2 C2

Al B3 C4

A2 BI C3

A3 Bl C1

D.11.6 Test Case 6. Input:

A .

A -> B.

B-> A.

149

-.. , '- N'' '',,'- " ':' "";" '"
"

"' " -S'

Expected Output:

Armstrong Relation for file: test-oneto_one

A B

- - - --

Al BI

A2 B2

D.11.7 Test Case 7. Input:

A B C D.

A -> B.

B-> A.

C -> D.

. Expected Output:

Armstrong Relation for file: testlto_1_2

A B C D

Al B1 C1 DI

Al B1 C2 D2

Al Bi C3 Dl

A2 B2 C1 D1

The results of the tests shown in the above test procedures are discussed in Chapter VI.

150

"A Bibliography

1. A. Albano et al. Computer Aided Database Design, The DATAID Project. Elsevier Science
Publishers B. V., Amsterdam, 1985.

2. C. Batini et al. Database design activities within the dataid project. Database Engineering,

7:197-202, December 1984.

3. Catriel Beeri and Ph'lip A. Bernstein. Computational problems relhd to the design of normal
form relational schemas. ACM Transactions on Database Systems, 4:30-59, March 1979.

4. Catriel Beeri and Michael Kifer. An integrated approach to logical design of relational database
schemes. ACM Transactions on Database Systems, 11:134-158, June 1986.

5. P. A. Bernstein. Synthesizing third-normal-form relations from functional dependencies. ACM
Transactions on Database Systems, 1:277-298, December 1976.

6. Anders Bjornerstedt and Christer Hulten. Redl: a database design tool for the relational
model of data. Database Engineering, 7:215-220, December 1984.

od 7. Michael L. Brodie. Automating Database Design and Development: A SIGMOD 87 Tutorial.
Technical Report, Computer Corporation of America, Four Cambridge Center, Cambridge,
MA 02142, May 1987.

8. S. Ceri and G. Gottlob. Normalization of relations and prolog. Communications of the ACM,
29:524-546, June 1986.

9. Richard E. Cobb et al. The database designer's workbench. Information Sciences, 32:33-45,
February 1984.

10. Robert M. Curtice. An automated logical data base design and structured analysis tool.r. Database Engineering, 7:221-226, December 1984.
11. Ronald Fagin. Armstrong databases. In 7th IBM Symposium on Mathematical Foundations

of Computer Science, pages 1-19, Kanagwa, Japan, 24-26 May 1982.

12. Ronald Fagin and Moshe Y. Vardi. The theory of data dependencies - a survey. Proceedings
of Symposia in Applied Mathematics, 34:19-71, 1986.

13. I. T. Hawryszkiewycz. Database Analysis and Design. Science Research Associates, Chicago,
1984.

14. Marian Herman. A database design methodology for an integrated database environment.
Data Base, 15:20-27, Fall 1983.

15. 2Lt Edward R. Jankus. Development of Computer Aided Database Design and Maintenance
Tools. Master's thesis, School of Engineering, Air Force Institute of Technology (AU), WVright-
Patterson AFB OH, December 1984.

16. Henry F. Korth and Abraham Silberschatz. Database Systems Concepts. McGraw-Hill, New
York, 1986.

17. Mei Li. A Nested Relational Database Design Tool. Master's thesis, Department of Computer
Engineering and Science, Case Western Reserve University, Cleveland OH, May 1986.

18. Mary E. S. Loomis. The Database Book. Macmilh. Publishing Company, New York, 1987.

19. Capt Thomas C. Mallary. Design of the Human-Coi, Irr Interface for a Computer Aided
Design Tool for the Normalization of Relations. Master .. -sis, School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB 011, December 1985.

20. Michael A. Melkanoff. July 1987. In a July 1987 telephone conversation with Capt Stansberry,
Dr. Melkanoff, at UCLA, indicated that the Armstr. ig relation tool is no longer available.

151

21. Michel A. Melkanoff and Carlo Zaniolo. Decomposition of relations and synthesis of entity-

relationship diagrams. In Peter P. Chen, editor, Entity-Relationship Approach to Systems
Analysis and Design, pages 277-294, North-Holland Publishing Company, New York, Decem-
ber 1979.

22. Capt Ruben Mender. A Computer Aided Tool for Entity-Relationship Database Design. Mas-
ter's thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1986.

23. Nancy E. Miller. File Structures Using Pascal. Benjamin/Cummings Publishing Company,
Inc., Menlo Park, CA, 1987.

24. David Reiner et al. The database design and evaluation workbench (ddew) project at cca.
Database Engineering, 7:191-196, December 1984.

25. Mark A. Roth. Theory of Non-First Normal Form Relational Databases. PhD thesis, The
University of Texas at Austin, Austin, Texas, May 1986.

26. A. M. Silva and M. A. Melkanoff. Advances in Database Theory. Volume 1, Plenum Publishing,
New York, 1981.

27. Capt Charles T. Travis. Interactive Automated System for Normalization of Relations. Mas-
ter's thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, March 1983.

28. D. M. Tsou and P. C. Fischer. Decomposition of a relation scheme into boyce-codd normal
form. ACM-SIGACT, 14:23-29, Summer 1982.

29. Jeffrey D. Ullman. Principles of Database Systems. Computer Science Press, Rockville, Mary-
land, second edition edition, 1981.

30. Eric G. Vesely. The Practitioner's Blueprint for Logical and Physical Database Design. Pren-
tice Hall, Englewood Cliffs, New Jersey, 1986.

31. S. Bing Yao et al. Principles of Database Design. Volume 1, Prentice-Hall, Englewood Cliffs,
New Jersey, 1985.

32. Li-Yan Yuan and Z. Meral Ozsoyoglu. Logical design of relational database schemes. In Pro-
ceedings of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 38-47, Association for Computing Machinery, March 23-25 1987.

33. Li-Yan Yuan and Z. Meral Ozsoyoglu. Unifying functional and multivalued dependencies for
relational database design. In Proceedings of the 5th ACM PODS, pages 183-190, March 1986.

34. Carlo Zaniolo and Michel A. Melkanoff. On the design of relational database schemata. ACM
Transactions on Database Systems, 6:1-47, March 1981.

152

IM)ILM -m 971 WV " TN -A - V Wr'_ ' V'V . V W-1~ . vXT7VJW V ' V' J .. J-

Vita

Captain Charles W. Stansberry, Jr. was born on 23 August 1957 in Morgantown, West

Virginia. He graduated from Beall High School in Frostburg, Maryland, in 1975 and attended the

University of Maryland, from which he received the degree of Bachelor of Science in Biological

Science in May 1980. Upon graduation, he received a commission in the USAF through the Officer

Training School program. He completed the Communications Electronics Maintenance Officer

technical training course at Keesler AFB, MS in July 1981, and completed the Communications

Computer Programning technical training course in November 1981, also at Keesler AFB. He then

served as a Computer Programmer/Analyst for the Real-time AUTODIN Interface and Distribution

System (RAIDS) at the Air Force Communications Computer Programming Center (AFCCPC) at

Tinker AFB, OK. Then, in May 1983 he became the Chief, DCT 9000 Programming Branch, also at

AFCCPC (now named CCSO). In May 1984, he received the degree of Bachelor of Science in Data

Processing from Central State University, Edmond, OK. His next assignment, in November 1984,

was at Headquarters Space Command, Colorado Springs, CO, where he worked in the System

Integration Office (SIO) as a Missile Warning System Communication Integration Officer until

entering the School of Engineering, Air Force Institute of Technology, in June 1986.

Permanent address: 3658 Southbrook Drive
Beavercreek, Ohio 45430

153

,~ ',,.. - - ' , . " i* .' . ; . " :. ," ' "

IN, -XISS %r EDI

SECURiTYCLASIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

a REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNQ SSIFIFn I
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

1pproveO for public release,
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribhtion unlimiteO.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

7FTT,Cs/tTr/87P-26

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)Scbco] o-F Erineering PF IT /171,

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Pir Force Institute of Tecdnoloxy
Wricht-Pattersci PFP CV 45433-6583

Sa. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO IACCESSION NO.

11. TITLE (Include Security Classification)

See Pcx
19

PERSONAL AUTHOR(S)

Charles W. Stansberry, P.S., CaTt, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Yeary MnthDaY) 11.PAGE COUNT

~~~4S~~ Thesi FRM____ OTec"nber 1166
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP C'C PmTF P , '[TP'1-P "f.cTC("T

ot 02

12 05
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: TpI %c ("I' I pp7pIP7(y 7WFIY mrn' p .Y, 7cM UPTT\BAE R Pr ST.N

Tesis ?visor: Marl I. PotI, Captain, USJ:P7

IN

D~IiSRIBUTION /AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION '

[~UNCLASSIFIEDUNLIMITED [N SAME AS RPT E DTIC USERS 1:!NCT IASS TF 7T7r

2aNAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL
MrlP. Pcth, ptain, US (513) 255-3576 I /TT/t ,

DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

INCIP SqTFI'FP

*.~ % : *



Elm wr.U r UflUWW UtWUWrW MuW ,"MKVW VV=VK XNfl m- Vas 'W'

Much of the current dependency theory used to design and study relational databases exiss"
in the form of published algorithns and theorems. However, hand simulating these algoritIIIIhS
can be a tedious and error prone chore. Therefore, the purpose of this thesis investigation wzas
to design and implement a computer tool (that is, a "toolbox") which contains various relaliusia
database design algorithms and functions to help solve the problems created by hand simulat ilII
the algorithms.

This thesis includes a review of the activities typically done to design a relational database.
and surveys the computer tools which are available, or are being developed, to assist databl.-,
designers with the logical design of relational databases. The survey of computer tools iiidic;t,-d
that although many researchers have developed computer tools to assist with relational dataL; sc
design, there are still many algorithms and functions which need to be incorporated into autoneitl
design tools.

The toolbbx implements algorithms to accomplish the following functions: 3NF decoii,,,-
sition, 4NF decomposition, BCNF decomposition, envelope set, FD/MVD minimal cover, dep,.i-
dency basis, ranimal cover, membership algorithm, attribute closure, Armstrong relation instai'(.
and support 'for generation of alternative logical designs. A simple menu-driven interface wa-.,
created to access the toolbox functions.

-'IThe toolbox is intended for use in an academic environment as a teaching aid and research
tool rather than for practical application to database design problems. However, the tool could be
used to design small relational databases which have a limited number of attributes. An evaluation 
of the toolbox done during the acceptance testing phase of development indicates that the tool cati
effectively serve in all of these capacities.

'A

% ~~~ % % %

% ftA



JLfs


